From 0ea7e08d01a9b303967f24c1f4a01b1ab741576f Mon Sep 17 00:00:00 2001 From: Brian Picciano Date: Sun, 22 Sep 2019 16:48:48 -0400 Subject: [PATCH] go fmt some stuff --- decimal.go | 296 ++++++++++++++++++++++++++--------------------------- 1 file changed, 148 insertions(+), 148 deletions(-) diff --git a/decimal.go b/decimal.go index 134ece2..b23d053 100644 --- a/decimal.go +++ b/decimal.go @@ -1261,174 +1261,174 @@ func (d Decimal) satan() Decimal { } // sin coefficients - var _sin = [...]Decimal{ - NewFromFloat(1.58962301576546568060E-10), // 0x3de5d8fd1fd19ccd - NewFromFloat(-2.50507477628578072866E-8), // 0xbe5ae5e5a9291f5d - NewFromFloat(2.75573136213857245213E-6), // 0x3ec71de3567d48a1 - NewFromFloat(-1.98412698295895385996E-4), // 0xbf2a01a019bfdf03 - NewFromFloat(8.33333333332211858878E-3), // 0x3f8111111110f7d0 - NewFromFloat(-1.66666666666666307295E-1), // 0xbfc5555555555548 - } +var _sin = [...]Decimal{ + NewFromFloat(1.58962301576546568060E-10), // 0x3de5d8fd1fd19ccd + NewFromFloat(-2.50507477628578072866E-8), // 0xbe5ae5e5a9291f5d + NewFromFloat(2.75573136213857245213E-6), // 0x3ec71de3567d48a1 + NewFromFloat(-1.98412698295895385996E-4), // 0xbf2a01a019bfdf03 + NewFromFloat(8.33333333332211858878E-3), // 0x3f8111111110f7d0 + NewFromFloat(-1.66666666666666307295E-1), // 0xbfc5555555555548 +} // Sin returns the sine of the radian argument x. - func (d Decimal) Sin() Decimal { - PI4A := NewFromFloat(7.85398125648498535156E-1) // 0x3fe921fb40000000, Pi/4 split into three parts - PI4B := NewFromFloat(3.77489470793079817668E-8) // 0x3e64442d00000000, - PI4C := NewFromFloat(2.69515142907905952645E-15) // 0x3ce8469898cc5170, - M4PI := NewFromFloat(1.273239544735162542821171882678754627704620361328125) // 4/pi +func (d Decimal) Sin() Decimal { + PI4A := NewFromFloat(7.85398125648498535156E-1) // 0x3fe921fb40000000, Pi/4 split into three parts + PI4B := NewFromFloat(3.77489470793079817668E-8) // 0x3e64442d00000000, + PI4C := NewFromFloat(2.69515142907905952645E-15) // 0x3ce8469898cc5170, + M4PI := NewFromFloat(1.273239544735162542821171882678754627704620361328125) // 4/pi - if d.Equal(NewFromFloat(0.0)) { - return d - } - // make argument positive but save the sign - sign := false - if d.LessThan(NewFromFloat(0.0)) { - d = d.Neg() - sign = true - } + if d.Equal(NewFromFloat(0.0)) { + return d + } + // make argument positive but save the sign + sign := false + if d.LessThan(NewFromFloat(0.0)) { + d = d.Neg() + sign = true + } - j := d.Mul(M4PI).IntPart() // integer part of x/(Pi/4), as integer for tests on the phase angle - y := NewFromFloat(float64(j)) // integer part of x/(Pi/4), as float + j := d.Mul(M4PI).IntPart() // integer part of x/(Pi/4), as integer for tests on the phase angle + y := NewFromFloat(float64(j)) // integer part of x/(Pi/4), as float - // map zeros to origin - if j&1 == 1 { - j++ - y = y.Add(NewFromFloat(1.0)) - } - j &= 7 // octant modulo 2Pi radians (360 degrees) - // reflect in x axis - if j > 3 { - sign = !sign - j -= 4 - } - z := d.Sub(y.Mul(PI4A)).Sub(y.Mul(PI4B)).Sub(y.Mul(PI4C)) // Extended precision modular arithmetic - zz := z.Mul(z) + // map zeros to origin + if j&1 == 1 { + j++ + y = y.Add(NewFromFloat(1.0)) + } + j &= 7 // octant modulo 2Pi radians (360 degrees) + // reflect in x axis + if j > 3 { + sign = !sign + j -= 4 + } + z := d.Sub(y.Mul(PI4A)).Sub(y.Mul(PI4B)).Sub(y.Mul(PI4C)) // Extended precision modular arithmetic + zz := z.Mul(z) - if j == 1 || j == 2 { - w := zz.Mul(zz).Mul(_cos[0].Mul(zz).Add(_cos[1]).Mul(zz).Add(_cos[2]).Mul(zz).Add(_cos[3]).Mul(zz).Add(_cos[4]).Mul(zz).Add(_cos[5])) - y = NewFromFloat(1.0).Sub(NewFromFloat(0.5).Mul(zz)).Add(w) - } else { - y = z.Add(z.Mul(zz).Mul(_sin[0].Mul(zz).Add(_sin[1]).Mul(zz).Add(_sin[2]).Mul(zz).Add(_sin[3]).Mul(zz).Add(_sin[4]).Mul(zz).Add(_sin[5]))) - } - if sign { - y = y.Neg() - } - return y - } + if j == 1 || j == 2 { + w := zz.Mul(zz).Mul(_cos[0].Mul(zz).Add(_cos[1]).Mul(zz).Add(_cos[2]).Mul(zz).Add(_cos[3]).Mul(zz).Add(_cos[4]).Mul(zz).Add(_cos[5])) + y = NewFromFloat(1.0).Sub(NewFromFloat(0.5).Mul(zz)).Add(w) + } else { + y = z.Add(z.Mul(zz).Mul(_sin[0].Mul(zz).Add(_sin[1]).Mul(zz).Add(_sin[2]).Mul(zz).Add(_sin[3]).Mul(zz).Add(_sin[4]).Mul(zz).Add(_sin[5]))) + } + if sign { + y = y.Neg() + } + return y +} - // cos coefficients - var _cos = [...]Decimal{ - NewFromFloat(-1.13585365213876817300E-11), // 0xbda8fa49a0861a9b - NewFromFloat(2.08757008419747316778E-9), // 0x3e21ee9d7b4e3f05 - NewFromFloat(-2.75573141792967388112E-7), // 0xbe927e4f7eac4bc6 - NewFromFloat(2.48015872888517045348E-5), // 0x3efa01a019c844f5 - NewFromFloat(-1.38888888888730564116E-3), // 0xbf56c16c16c14f91 - NewFromFloat(4.16666666666665929218E-2), // 0x3fa555555555554b - } +// cos coefficients +var _cos = [...]Decimal{ + NewFromFloat(-1.13585365213876817300E-11), // 0xbda8fa49a0861a9b + NewFromFloat(2.08757008419747316778E-9), // 0x3e21ee9d7b4e3f05 + NewFromFloat(-2.75573141792967388112E-7), // 0xbe927e4f7eac4bc6 + NewFromFloat(2.48015872888517045348E-5), // 0x3efa01a019c844f5 + NewFromFloat(-1.38888888888730564116E-3), // 0xbf56c16c16c14f91 + NewFromFloat(4.16666666666665929218E-2), // 0x3fa555555555554b +} - // Cos returns the cosine of the radian argument x. - func (d Decimal) Cos() Decimal { +// Cos returns the cosine of the radian argument x. +func (d Decimal) Cos() Decimal { - PI4A := NewFromFloat(7.85398125648498535156E-1) // 0x3fe921fb40000000, Pi/4 split into three parts - PI4B := NewFromFloat(3.77489470793079817668E-8) // 0x3e64442d00000000, - PI4C := NewFromFloat(2.69515142907905952645E-15) // 0x3ce8469898cc5170, - M4PI := NewFromFloat(1.273239544735162542821171882678754627704620361328125) // 4/pi + PI4A := NewFromFloat(7.85398125648498535156E-1) // 0x3fe921fb40000000, Pi/4 split into three parts + PI4B := NewFromFloat(3.77489470793079817668E-8) // 0x3e64442d00000000, + PI4C := NewFromFloat(2.69515142907905952645E-15) // 0x3ce8469898cc5170, + M4PI := NewFromFloat(1.273239544735162542821171882678754627704620361328125) // 4/pi - // make argument positive - sign := false - if d.LessThan(NewFromFloat(0.0)) { - d = d.Neg() - } + // make argument positive + sign := false + if d.LessThan(NewFromFloat(0.0)) { + d = d.Neg() + } - j := d.Mul(M4PI).IntPart() // integer part of x/(Pi/4), as integer for tests on the phase angle - y := NewFromFloat(float64(j)) // integer part of x/(Pi/4), as float + j := d.Mul(M4PI).IntPart() // integer part of x/(Pi/4), as integer for tests on the phase angle + y := NewFromFloat(float64(j)) // integer part of x/(Pi/4), as float - // map zeros to origin - if j&1 == 1 { - j++ - y = y.Add(NewFromFloat(1.0)) - } - j &= 7 // octant modulo 2Pi radians (360 degrees) - // reflect in x axis - if j > 3 { - sign = !sign - j -= 4 - } - if j > 1 { - sign = !sign - } + // map zeros to origin + if j&1 == 1 { + j++ + y = y.Add(NewFromFloat(1.0)) + } + j &= 7 // octant modulo 2Pi radians (360 degrees) + // reflect in x axis + if j > 3 { + sign = !sign + j -= 4 + } + if j > 1 { + sign = !sign + } - z := d.Sub(y.Mul(PI4A)).Sub(y.Mul(PI4B)).Sub(y.Mul(PI4C)) // Extended precision modular arithmetic - zz := z.Mul(z) + z := d.Sub(y.Mul(PI4A)).Sub(y.Mul(PI4B)).Sub(y.Mul(PI4C)) // Extended precision modular arithmetic + zz := z.Mul(z) - if j == 1 || j == 2 { - y = z.Add(z.Mul(zz).Mul(_sin[0].Mul(zz).Add(_sin[1]).Mul(zz).Add(_sin[2]).Mul(zz).Add(_sin[3]).Mul(zz).Add(_sin[4]).Mul(zz).Add(_sin[5]))) - } else { - w := zz.Mul(zz).Mul(_cos[0].Mul(zz).Add(_cos[1]).Mul(zz).Add(_cos[2]).Mul(zz).Add(_cos[3]).Mul(zz).Add(_cos[4]).Mul(zz).Add(_cos[5])) - y = NewFromFloat(1.0).Sub(NewFromFloat(0.5).Mul(zz)).Add(w) - } - if sign { - y = y.Neg() - } - return y - } + if j == 1 || j == 2 { + y = z.Add(z.Mul(zz).Mul(_sin[0].Mul(zz).Add(_sin[1]).Mul(zz).Add(_sin[2]).Mul(zz).Add(_sin[3]).Mul(zz).Add(_sin[4]).Mul(zz).Add(_sin[5]))) + } else { + w := zz.Mul(zz).Mul(_cos[0].Mul(zz).Add(_cos[1]).Mul(zz).Add(_cos[2]).Mul(zz).Add(_cos[3]).Mul(zz).Add(_cos[4]).Mul(zz).Add(_cos[5])) + y = NewFromFloat(1.0).Sub(NewFromFloat(0.5).Mul(zz)).Add(w) + } + if sign { + y = y.Neg() + } + return y +} - var _tanP = [...]Decimal{ - NewFromFloat(-1.30936939181383777646E+4), // 0xc0c992d8d24f3f38 - NewFromFloat(1.15351664838587416140E+6), // 0x413199eca5fc9ddd - NewFromFloat(-1.79565251976484877988E+7), // 0xc1711fead3299176 - } - var _tanQ = [...]Decimal{ - NewFromFloat(1.00000000000000000000E+0), - NewFromFloat(1.36812963470692954678E+4), //0x40cab8a5eeb36572 - NewFromFloat(-1.32089234440210967447E+6), //0xc13427bc582abc96 - NewFromFloat(2.50083801823357915839E+7), //0x4177d98fc2ead8ef - NewFromFloat(-5.38695755929454629881E+7), //0xc189afe03cbe5a31 - } +var _tanP = [...]Decimal{ + NewFromFloat(-1.30936939181383777646E+4), // 0xc0c992d8d24f3f38 + NewFromFloat(1.15351664838587416140E+6), // 0x413199eca5fc9ddd + NewFromFloat(-1.79565251976484877988E+7), // 0xc1711fead3299176 +} +var _tanQ = [...]Decimal{ + NewFromFloat(1.00000000000000000000E+0), + NewFromFloat(1.36812963470692954678E+4), //0x40cab8a5eeb36572 + NewFromFloat(-1.32089234440210967447E+6), //0xc13427bc582abc96 + NewFromFloat(2.50083801823357915839E+7), //0x4177d98fc2ead8ef + NewFromFloat(-5.38695755929454629881E+7), //0xc189afe03cbe5a31 +} - // Tan returns the tangent of the radian argument x. - func (d Decimal) Tan() Decimal { +// Tan returns the tangent of the radian argument x. +func (d Decimal) Tan() Decimal { - PI4A := NewFromFloat(7.85398125648498535156E-1) // 0x3fe921fb40000000, Pi/4 split into three parts - PI4B := NewFromFloat(3.77489470793079817668E-8) // 0x3e64442d00000000, - PI4C := NewFromFloat(2.69515142907905952645E-15) // 0x3ce8469898cc5170, - M4PI := NewFromFloat(1.273239544735162542821171882678754627704620361328125) // 4/pi + PI4A := NewFromFloat(7.85398125648498535156E-1) // 0x3fe921fb40000000, Pi/4 split into three parts + PI4B := NewFromFloat(3.77489470793079817668E-8) // 0x3e64442d00000000, + PI4C := NewFromFloat(2.69515142907905952645E-15) // 0x3ce8469898cc5170, + M4PI := NewFromFloat(1.273239544735162542821171882678754627704620361328125) // 4/pi - if d.Equal(NewFromFloat(0.0)) { - return d - } + if d.Equal(NewFromFloat(0.0)) { + return d + } - // make argument positive but save the sign - sign := false - if d.LessThan(NewFromFloat(0.0)) { - d = d.Neg() - sign = true - } + // make argument positive but save the sign + sign := false + if d.LessThan(NewFromFloat(0.0)) { + d = d.Neg() + sign = true + } - j := d.Mul(M4PI).IntPart() // integer part of x/(Pi/4), as integer for tests on the phase angle - y := NewFromFloat(float64(j)) // integer part of x/(Pi/4), as float + j := d.Mul(M4PI).IntPart() // integer part of x/(Pi/4), as integer for tests on the phase angle + y := NewFromFloat(float64(j)) // integer part of x/(Pi/4), as float - // map zeros to origin - if j&1 == 1 { - j++ - y = y.Add(NewFromFloat(1.0)) - } + // map zeros to origin + if j&1 == 1 { + j++ + y = y.Add(NewFromFloat(1.0)) + } - z := d.Sub(y.Mul(PI4A)).Sub(y.Mul(PI4B)).Sub(y.Mul(PI4C)) // Extended precision modular arithmetic - zz := z.Mul(z) + z := d.Sub(y.Mul(PI4A)).Sub(y.Mul(PI4B)).Sub(y.Mul(PI4C)) // Extended precision modular arithmetic + zz := z.Mul(z) - if zz.GreaterThan(NewFromFloat(1e-14)) { - w := zz.Mul(_tanP[0].Mul(zz).Add(_tanP[1]).Mul(zz).Add(_tanP[2])) - x := zz.Add(_tanQ[1]).Mul(zz).Add(_tanQ[2]).Mul(zz).Add(_tanQ[3]).Mul(zz).Add(_tanQ[4]) - y = z.Add(z.Mul(w.Div(x))) - } else { - y = z - } - if j&2 == 2 { - y = NewFromFloat(-1.0).Div(y) - } - if sign { - y = y.Neg() - } - return y - } + if zz.GreaterThan(NewFromFloat(1e-14)) { + w := zz.Mul(_tanP[0].Mul(zz).Add(_tanP[1]).Mul(zz).Add(_tanP[2])) + x := zz.Add(_tanQ[1]).Mul(zz).Add(_tanQ[2]).Mul(zz).Add(_tanQ[3]).Mul(zz).Add(_tanQ[4]) + y = z.Add(z.Mul(w.Div(x))) + } else { + y = z + } + if j&2 == 2 { + y = NewFromFloat(-1.0).Div(y) + } + if sign { + y = y.Neg() + } + return y +}