Compare commits

..

1 commit

Author SHA1 Message Date
kempeng
ed771bb615
Merge aa8a681072 into d00399e161 2024-03-01 13:54:39 -08:00
7 changed files with 143 additions and 751 deletions

View file

@ -1,15 +1,11 @@
name: ci
on:
push:
branches:
- master
pull_request:
on: [push]
jobs:
ci-job:
runs-on: ubuntu-latest
strategy:
matrix:
go: [ '1.10.x', '1.19', '1.20', '1.21', '1.22', '1.x' ]
go: [ '1.7.x', '1.18', '1.19', '1.20', '1.21', '1.x' ]
name: Go ${{ matrix.go }}
steps:
- uses: actions/checkout@v4

View file

@ -1,30 +1,3 @@
## Decimal v1.4.0
#### BREAKING
- Drop support for Go version older than 1.10 [#361](https://github.com/shopspring/decimal/pull/361)
#### FEATURES
- Add implementation of natural logarithm [#339](https://github.com/shopspring/decimal/pull/339) [#357](https://github.com/shopspring/decimal/pull/357)
- Add improved implementation of power operation [#358](https://github.com/shopspring/decimal/pull/358)
- Add Compare method which forwards calls to Cmp [#346](https://github.com/shopspring/decimal/pull/346)
- Add NewFromBigRat constructor [#288](https://github.com/shopspring/decimal/pull/288)
- Add NewFromUint64 constructor [#352](https://github.com/shopspring/decimal/pull/352)
#### ENHANCEMENTS
- Migrate to Github Actions [#245](https://github.com/shopspring/decimal/pull/245) [#340](https://github.com/shopspring/decimal/pull/340)
- Fix examples for RoundDown, RoundFloor, RoundUp, and RoundCeil [#285](https://github.com/shopspring/decimal/pull/285) [#328](https://github.com/shopspring/decimal/pull/328) [#341](https://github.com/shopspring/decimal/pull/341)
- Use Godoc standard to mark deprecated Equals and StringScaled methods [#342](https://github.com/shopspring/decimal/pull/342)
- Removed unnecessary min function for RescalePair method [#265](https://github.com/shopspring/decimal/pull/265)
- Avoid reallocation of initial slice in MarshalBinary (GobEncode) [#355](https://github.com/shopspring/decimal/pull/355)
- Optimize NumDigits method [#301](https://github.com/shopspring/decimal/pull/301) [#356](https://github.com/shopspring/decimal/pull/356)
- Optimize BigInt method [#359](https://github.com/shopspring/decimal/pull/359)
- Support scanning uint64 [#131](https://github.com/shopspring/decimal/pull/131) [#364](https://github.com/shopspring/decimal/pull/364)
- Add docs section with alternative libraries [#363](https://github.com/shopspring/decimal/pull/363)
#### BUGFIXES
- Fix incorrect calculation of decimal modulo [#258](https://github.com/shopspring/decimal/pull/258) [#317](https://github.com/shopspring/decimal/pull/317)
- Allocate new(big.Int) in Copy method to deeply clone it [#278](https://github.com/shopspring/decimal/pull/278)
- Fix overflow edge case in QuoRem method [#322](https://github.com/shopspring/decimal/pull/322)
## Decimal v1.3.1
#### ENHANCEMENTS

View file

@ -22,12 +22,7 @@ Run `go get github.com/shopspring/decimal`
## Requirements
Decimal library requires Go version `>=1.10`
## Documentation
http://godoc.org/github.com/shopspring/decimal
Decimal library requires Go version `>=1.7`
## Usage
@ -64,16 +59,14 @@ func main() {
}
```
## Alternative libraries
## Documentation
When working with decimal numbers, you might face problems this library is not perfectly suited for.
Fortunately, thanks to the wonderful community we have a dozen other libraries that you can choose from.
Explore other alternatives to find the one that best fits your needs :)
http://godoc.org/github.com/shopspring/decimal
* [cockroachdb/apd](https://github.com/cockroachdb/apd) - arbitrary precision, mutable and rich API similar to `big.Int`, more performant than this library
* [alpacahq/alpacadecimal](https://github.com/alpacahq/alpacadecimal) - high performance, low precision (12 digits), fully compatible API with this library
* [govalues/decimal](https://github.com/govalues/decimal) - high performance, zero-allocation, low precision (19 digits)
* [greatcloak/decimal](https://github.com/greatcloak/decimal) - fork focusing on billing and e-commerce web application related use cases, includes out-of-the-box BSON marshaling support
## Production Usage
* [Spring](https://shopspring.com/), since August 14, 2014.
* If you are using this in production, please let us know!
## FAQ

View file

@ -43,20 +43,6 @@ import (
// d4.String() // output: "0.667"
var DivisionPrecision = 16
// PowPrecisionNegativeExponent specifies the maximum precision of the result (digits after decimal point)
// when calculating decimal power. Only used for cases where the exponent is a negative number.
// This constant applies to Pow, PowInt32 and PowBigInt methods, PowWithPrecision method is not constrained by it.
//
// Example:
//
// d1, err := decimal.NewFromFloat(15.2).PowInt32(-2)
// d1.String() // output: "0.0043282548476454"
//
// decimal.PowPrecisionNegativeExponent = 24
// d2, err := decimal.NewFromFloat(15.2).PowInt32(-2)
// d2.String() // output: "0.004328254847645429362881"
var PowPrecisionNegativeExponent = 16
// MarshalJSONWithoutQuotes should be set to true if you want the decimal to
// be JSON marshaled as a number, instead of as a string.
// WARNING: this is dangerous for decimals with many digits, since many JSON
@ -130,18 +116,6 @@ func NewFromInt32(value int32) Decimal {
}
}
// NewFromUint64 converts an uint64 to Decimal.
//
// Example:
//
// NewFromUint64(123).String() // output: "123"
func NewFromUint64(value uint64) Decimal {
return Decimal{
value: new(big.Int).SetUint64(value),
exp: 0,
}
}
// NewFromBigInt returns a new Decimal from a big.Int, value * 10 ^ exp
func NewFromBigInt(value *big.Int, exp int32) Decimal {
return Decimal{
@ -155,10 +129,11 @@ func NewFromBigInt(value *big.Int, exp int32) Decimal {
//
// Example:
//
// d1 := NewFromBigRat(big.NewRat(0, 1), 0) // output: "0"
// d2 := NewFromBigRat(big.NewRat(4, 5), 1) // output: "0.8"
// d3 := NewFromBigRat(big.NewRat(1000, 3), 3) // output: "333.333"
// d4 := NewFromBigRat(big.NewRat(2, 7), 4) // output: "0.2857"
// d1 := NewFromBigRat(big.NewRat(0, 1), 0) // output: "0"
// d2 := NewFromBigRat(big.NewRat(4, 5), 1) // output: "0.8"
// d3 := NewFromBigRat(big.NewRat(1000, 3), 3) // output: "333.333"
// d4 := NewFromBigRat(big.NewRat(2, 7), 4) // output: "0.2857"
//
func NewFromBigRat(value *big.Rat, precision int32) Decimal {
return Decimal{
value: new(big.Int).Set(value.Num()),
@ -675,274 +650,20 @@ func (d Decimal) Mod(d2 Decimal) Decimal {
return r
}
// Pow returns d to the power of d2.
// When exponent is negative the returned decimal will have maximum precision of PowPrecisionNegativeExponent places after decimal point.
//
// Pow returns 0 (zero-value of Decimal) instead of error for power operation edge cases, to handle those edge cases use PowWithPrecision
// Edge cases not handled by Pow:
// - 0 ** 0 => undefined value
// - 0 ** y, where y < 0 => infinity
// - x ** y, where x < 0 and y is non-integer decimal => imaginary value
//
// Example:
//
// d1 := decimal.NewFromFloat(4.0)
// d2 := decimal.NewFromFloat(4.0)
// res1 := d1.Pow(d2)
// res1.String() // output: "256"
//
// d3 := decimal.NewFromFloat(5.0)
// d4 := decimal.NewFromFloat(5.73)
// res2 := d3.Pow(d4)
// res2.String() // output: "10118.08037125"
// Pow returns d to the power d2
func (d Decimal) Pow(d2 Decimal) Decimal {
baseSign := d.Sign()
expSign := d2.Sign()
if baseSign == 0 {
if expSign == 0 {
return Decimal{}
}
if expSign == 1 {
return Decimal{zeroInt, 0}
}
if expSign == -1 {
return Decimal{}
}
var temp Decimal
if d2.IntPart() == 0 {
return NewFromFloat(1)
}
if expSign == 0 {
return Decimal{oneInt, 0}
temp = d.Pow(d2.Div(NewFromFloat(2)))
if d2.IntPart()%2 == 0 {
return temp.Mul(temp)
}
// TODO: optimize extraction of fractional part
one := Decimal{oneInt, 0}
expIntPart, expFracPart := d2.QuoRem(one, 0)
if baseSign == -1 && !expFracPart.IsZero() {
return Decimal{}
if d2.IntPart() > 0 {
return temp.Mul(temp).Mul(d)
}
intPartPow, _ := d.PowBigInt(expIntPart.value)
// if exponent is an integer we don't need to calculate d1**frac(d2)
if expFracPart.value.Sign() == 0 {
return intPartPow
}
// TODO: optimize NumDigits for more performant precision adjustment
digitsBase := d.NumDigits()
digitsExponent := d2.NumDigits()
precision := digitsBase
if digitsExponent > precision {
precision += digitsExponent
}
precision += 6
// Calculate x ** frac(y), where
// x ** frac(y) = exp(ln(x ** frac(y)) = exp(ln(x) * frac(y))
fracPartPow, err := d.Abs().Ln(-d.exp + int32(precision))
if err != nil {
return Decimal{}
}
fracPartPow = fracPartPow.Mul(expFracPart)
fracPartPow, err = fracPartPow.ExpTaylor(-d.exp + int32(precision))
if err != nil {
return Decimal{}
}
// Join integer and fractional part,
// base ** (expBase + expFrac) = base ** expBase * base ** expFrac
res := intPartPow.Mul(fracPartPow)
return res
}
// PowWithPrecision returns d to the power of d2.
// Precision parameter specifies minimum precision of the result (digits after decimal point).
// Returned decimal is not rounded to 'precision' places after decimal point.
//
// PowWithPrecision returns error when:
// - 0 ** 0 => undefined value
// - 0 ** y, where y < 0 => infinity
// - x ** y, where x < 0 and y is non-integer decimal => imaginary value
//
// Example:
//
// d1 := decimal.NewFromFloat(4.0)
// d2 := decimal.NewFromFloat(4.0)
// res1, err := d1.PowWithPrecision(d2, 2)
// res1.String() // output: "256"
//
// d3 := decimal.NewFromFloat(5.0)
// d4 := decimal.NewFromFloat(5.73)
// res2, err := d3.PowWithPrecision(d4, 5)
// res2.String() // output: "10118.080371595015625"
//
// d5 := decimal.NewFromFloat(-3.0)
// d6 := decimal.NewFromFloat(-6.0)
// res3, err := d5.PowWithPrecision(d6, 10)
// res3.String() // output: "0.0013717421"
func (d Decimal) PowWithPrecision(d2 Decimal, precision int32) (Decimal, error) {
baseSign := d.Sign()
expSign := d2.Sign()
if baseSign == 0 {
if expSign == 0 {
return Decimal{}, fmt.Errorf("cannot represent undefined value of 0**0")
}
if expSign == 1 {
return Decimal{zeroInt, 0}, nil
}
if expSign == -1 {
return Decimal{}, fmt.Errorf("cannot represent infinity value of 0 ** y, where y < 0")
}
}
if expSign == 0 {
return Decimal{oneInt, 0}, nil
}
// TODO: optimize extraction of fractional part
one := Decimal{oneInt, 0}
expIntPart, expFracPart := d2.QuoRem(one, 0)
if baseSign == -1 && !expFracPart.IsZero() {
return Decimal{}, fmt.Errorf("cannot represent imaginary value of x ** y, where x < 0 and y is non-integer decimal")
}
intPartPow, _ := d.powBigIntWithPrecision(expIntPart.value, precision)
// if exponent is an integer we don't need to calculate d1**frac(d2)
if expFracPart.value.Sign() == 0 {
return intPartPow, nil
}
// TODO: optimize NumDigits for more performant precision adjustment
digitsBase := d.NumDigits()
digitsExponent := d2.NumDigits()
if int32(digitsBase) > precision {
precision = int32(digitsBase)
}
if int32(digitsExponent) > precision {
precision += int32(digitsExponent)
}
// increase precision by 10 to compensate for errors in further calculations
precision += 10
// Calculate x ** frac(y), where
// x ** frac(y) = exp(ln(x ** frac(y)) = exp(ln(x) * frac(y))
fracPartPow, err := d.Abs().Ln(precision)
if err != nil {
return Decimal{}, err
}
fracPartPow = fracPartPow.Mul(expFracPart)
fracPartPow, err = fracPartPow.ExpTaylor(precision)
if err != nil {
return Decimal{}, err
}
// Join integer and fractional part,
// base ** (expBase + expFrac) = base ** expBase * base ** expFrac
res := intPartPow.Mul(fracPartPow)
return res, nil
}
// PowInt32 returns d to the power of exp, where exp is int32.
// Only returns error when d and exp is 0, thus result is undefined.
//
// When exponent is negative the returned decimal will have maximum precision of PowPrecisionNegativeExponent places after decimal point.
//
// Example:
//
// d1, err := decimal.NewFromFloat(4.0).PowInt32(4)
// d1.String() // output: "256"
//
// d2, err := decimal.NewFromFloat(3.13).PowInt32(5)
// d2.String() // output: "300.4150512793"
func (d Decimal) PowInt32(exp int32) (Decimal, error) {
if d.IsZero() && exp == 0 {
return Decimal{}, fmt.Errorf("cannot represent undefined value of 0**0")
}
isExpNeg := exp < 0
exp = abs(exp)
n, result := d, New(1, 0)
for exp > 0 {
if exp%2 == 1 {
result = result.Mul(n)
}
exp /= 2
if exp > 0 {
n = n.Mul(n)
}
}
if isExpNeg {
return New(1, 0).DivRound(result, int32(PowPrecisionNegativeExponent)), nil
}
return result, nil
}
// PowBigInt returns d to the power of exp, where exp is big.Int.
// Only returns error when d and exp is 0, thus result is undefined.
//
// When exponent is negative the returned decimal will have maximum precision of PowPrecisionNegativeExponent places after decimal point.
//
// Example:
//
// d1, err := decimal.NewFromFloat(3.0).PowBigInt(big.NewInt(3))
// d1.String() // output: "27"
//
// d2, err := decimal.NewFromFloat(629.25).PowBigInt(big.NewInt(5))
// d2.String() // output: "98654323103449.5673828125"
func (d Decimal) PowBigInt(exp *big.Int) (Decimal, error) {
return d.powBigIntWithPrecision(exp, int32(PowPrecisionNegativeExponent))
}
func (d Decimal) powBigIntWithPrecision(exp *big.Int, precision int32) (Decimal, error) {
if d.IsZero() && exp.Sign() == 0 {
return Decimal{}, fmt.Errorf("cannot represent undefined value of 0**0")
}
tmpExp := new(big.Int).Set(exp)
isExpNeg := exp.Sign() < 0
if isExpNeg {
tmpExp.Abs(tmpExp)
}
n, result := d, New(1, 0)
for tmpExp.Sign() > 0 {
if tmpExp.Bit(0) == 1 {
result = result.Mul(n)
}
tmpExp.Rsh(tmpExp, 1)
if tmpExp.Sign() > 0 {
n = n.Mul(n)
}
}
if isExpNeg {
return New(1, 0).DivRound(result, precision), nil
}
return result, nil
return temp.Mul(temp).Div(d)
}
// ExpHullAbrham calculates the natural exponent of decimal (e to the power of d) using Hull-Abraham algorithm.
@ -1199,10 +920,7 @@ func (d Decimal) Ln(precision int32) (Decimal, error) {
// Halley's Iteration.
// Calculating n-th term of formula: a_(n+1) = a_n - 2 * (exp(a_n) - z) / (exp(a_n) + z),
// until the difference between current and next term is smaller than epsilon
var prevStep Decimal
maxIters := calcPrecision*2 + 10
for i := int32(0); i < maxIters; i++ {
for {
// exp(a_n)
comp3, _ = comp1.ExpTaylor(calcPrecision)
// exp(a_n) - z
@ -1216,17 +934,9 @@ func (d Decimal) Ln(precision int32) (Decimal, error) {
// comp1 = a_(n+1) = a_n - 2 * (exp(a_n) - z) / (exp(a_n) + z)
comp1 = comp1.Sub(comp3)
if prevStep.Add(comp3).IsZero() {
// If iteration steps oscillate we should return early and prevent an infinity loop
// NOTE(mwoss): This should be quite a rare case, returning error is not necessary
break
}
if comp3.Abs().Cmp(epsilon) <= 0 {
break
}
prevStep = comp3
}
}
@ -1236,33 +946,14 @@ func (d Decimal) Ln(precision int32) (Decimal, error) {
}
// NumDigits returns the number of digits of the decimal coefficient (d.Value)
// Note: Current implementation is extremely slow for large decimals and/or decimals with large fractional part
func (d Decimal) NumDigits() int {
if d.value == nil {
return 1
d.ensureInitialized()
// Note(mwoss): It can be optimized, unnecessary cast of big.Int to string
if d.IsNegative() {
return len(d.value.String()) - 1
}
if d.value.IsInt64() {
i64 := d.value.Int64()
// restrict fast path to integers with exact conversion to float64
if i64 <= (1<<53) && i64 >= -(1<<53) {
if i64 == 0 {
return 1
}
return int(math.Log10(math.Abs(float64(i64)))) + 1
}
}
estimatedNumDigits := int(float64(d.value.BitLen()) / math.Log2(10))
// estimatedNumDigits (lg10) may be off by 1, need to verify
digitsBigInt := big.NewInt(int64(estimatedNumDigits))
errorCorrectionUnit := digitsBigInt.Exp(tenInt, digitsBigInt, nil)
if d.value.CmpAbs(errorCorrectionUnit) >= 0 {
return estimatedNumDigits + 1
}
return estimatedNumDigits
return len(d.value.String())
}
// IsInteger returns true when decimal can be represented as an integer value, otherwise, it returns false.
@ -1418,7 +1109,9 @@ func (d Decimal) IntPart() int64 {
// BigInt returns integer component of the decimal as a BigInt.
func (d Decimal) BigInt() *big.Int {
scaledD := d.rescale(0)
return scaledD.value
i := &big.Int{}
i.SetString(scaledD.String(), 10)
return i
}
// BigFloat returns decimal as BigFloat.
@ -1813,18 +1506,19 @@ func (d *Decimal) UnmarshalBinary(data []byte) error {
// MarshalBinary implements the encoding.BinaryMarshaler interface.
func (d Decimal) MarshalBinary() (data []byte, err error) {
// exp is written first, but encode value first to know output size
var valueData []byte
if valueData, err = d.value.GobEncode(); err != nil {
return nil, err
// Write the exponent first since it's a fixed size
v1 := make([]byte, 4)
binary.BigEndian.PutUint32(v1, uint32(d.exp))
// Add the value
var v2 []byte
if v2, err = d.value.GobEncode(); err != nil {
return
}
// Write the exponent in front, since it's a fixed size
expData := make([]byte, 4, len(valueData)+4)
binary.BigEndian.PutUint32(expData, uint32(d.exp))
// Return the byte array
return append(expData, valueData...), nil
data = append(v1, v2...)
return
}
// Scan implements the sql.Scanner interface for database deserialization.
@ -1847,11 +1541,6 @@ func (d *Decimal) Scan(value interface{}) error {
*d = New(v, 0)
return nil
case uint64:
// while clickhouse may send 0 in db as uint64
*d = NewFromUint64(v)
return nil
default:
// default is trying to interpret value stored as string
str, err := unquoteIfQuoted(v)

View file

@ -3,7 +3,6 @@ package decimal
import (
"fmt"
"math"
"math/big"
"math/rand"
"sort"
"strconv"
@ -121,34 +120,6 @@ func BenchmarkDecimal_RoundCash_Five(b *testing.B) {
}
}
func numDigits(b *testing.B, want int, val Decimal) {
b.Helper()
for i := 0; i < b.N; i++ {
if have := val.NumDigits(); have != want {
b.Fatalf("\nHave: %d\nWant: %d", have, want)
}
}
}
func BenchmarkDecimal_NumDigits10(b *testing.B) {
numDigits(b, 10, New(3478512345, -3))
}
func BenchmarkDecimal_NumDigits100(b *testing.B) {
s := make([]byte, 102)
for i := range s {
s[i] = byte('0' + i%10)
}
s[0] = '-'
s[100] = '.'
d, err := NewFromString(string(s))
if err != nil {
b.Log(d)
b.Error(err)
}
numDigits(b, 100, d)
}
func Benchmark_Cmp(b *testing.B) {
decimals := DecimalSlice([]Decimal{})
for i := 0; i < 1000000; i++ {
@ -160,7 +131,7 @@ func Benchmark_Cmp(b *testing.B) {
}
}
func BenchmarkDecimal_Add_different_precision(b *testing.B) {
func Benchmark_decimal_Decimal_Add_different_precision(b *testing.B) {
d1 := NewFromFloat(1000.123)
d2 := NewFromFloat(500).Mul(NewFromFloat(0.12))
@ -171,7 +142,7 @@ func BenchmarkDecimal_Add_different_precision(b *testing.B) {
}
}
func BenchmarkDecimal_Sub_different_precision(b *testing.B) {
func Benchmark_decimal_Decimal_Sub_different_precision(b *testing.B) {
d1 := NewFromFloat(1000.123)
d2 := NewFromFloat(500).Mul(NewFromFloat(0.12))
@ -182,7 +153,7 @@ func BenchmarkDecimal_Sub_different_precision(b *testing.B) {
}
}
func BenchmarkDecimal_Add_same_precision(b *testing.B) {
func Benchmark_decimal_Decimal_Add_same_precision(b *testing.B) {
d1 := NewFromFloat(1000.123)
d2 := NewFromFloat(500.123)
@ -193,7 +164,7 @@ func BenchmarkDecimal_Add_same_precision(b *testing.B) {
}
}
func BenchmarkDecimal_Sub_same_precision(b *testing.B) {
func Benchmark_decimal_Decimal_Sub_same_precision(b *testing.B) {
d1 := NewFromFloat(1000.123)
d2 := NewFromFloat(500.123)
@ -214,41 +185,6 @@ func BenchmarkDecimal_IsInteger(b *testing.B) {
}
}
func BenchmarkDecimal_Pow(b *testing.B) {
d1 := RequireFromString("5.2")
d2 := RequireFromString("6.3")
for i := 0; i < b.N; i++ {
d1.Pow(d2)
}
}
func BenchmarkDecimal_PowWithPrecision(b *testing.B) {
d1 := RequireFromString("5.2")
d2 := RequireFromString("6.3")
for i := 0; i < b.N; i++ {
_, _ = d1.PowWithPrecision(d2, 8)
}
}
func BenchmarkDecimal_PowInt32(b *testing.B) {
d1 := RequireFromString("5.2")
d2 := int32(10)
for i := 0; i < b.N; i++ {
_, _ = d1.PowInt32(d2)
}
}
func BenchmarkDecimal_PowBigInt(b *testing.B) {
d1 := RequireFromString("5.2")
d2 := big.NewInt(10)
for i := 0; i < b.N; i++ {
_, _ = d1.PowBigInt(d2)
}
}
func BenchmarkDecimal_NewFromString(b *testing.B) {
count := 72
prices := make([]string, 0, count)

View file

@ -476,11 +476,10 @@ func TestNewFromFloatWithExponent(t *testing.T) {
func TestNewFromInt(t *testing.T) {
tests := map[int64]string{
0: "0",
1: "1",
323412345: "323412345",
9223372036854775807: "9223372036854775807",
-9223372036854775808: "-9223372036854775808",
0: "0",
1: "1",
323412345: "323412345",
9223372036854775807: "9223372036854775807",
}
// add negatives
@ -502,11 +501,10 @@ func TestNewFromInt(t *testing.T) {
func TestNewFromInt32(t *testing.T) {
tests := map[int32]string{
0: "0",
1: "1",
323412345: "323412345",
2147483647: "2147483647",
-2147483648: "-2147483648",
0: "0",
1: "1",
323412345: "323412345",
2147483647: "2147483647",
}
// add negatives
@ -526,25 +524,6 @@ func TestNewFromInt32(t *testing.T) {
}
}
func TestNewFromUint64(t *testing.T) {
tests := map[uint64]string{
0: "0",
1: "1",
323412345: "323412345",
9223372036854775807: "9223372036854775807",
18446744073709551615: "18446744073709551615",
}
for input, s := range tests {
d := NewFromUint64(input)
if d.String() != s {
t.Errorf("expected %s, got %s (%s, %d)",
s, d.String(),
d.value.String(), d.exp)
}
}
}
func TestNewFromBigIntWithExponent(t *testing.T) {
type Inp struct {
val *big.Int
@ -2416,57 +2395,104 @@ func TestDecimal_Max(t *testing.T) {
}
}
func scanHelper(t *testing.T, dbval interface{}, expected Decimal) {
t.Helper()
a := Decimal{}
if err := a.Scan(dbval); err != nil {
// Scan failed... no need to test result value
t.Errorf("a.Scan(%v) failed with message: %s", dbval, err)
} else if !a.Equal(expected) {
// Scan succeeded... test resulting values
t.Errorf("%s does not equal to %s", a, expected)
}
}
func TestDecimal_Scan(t *testing.T) {
// test the Scan method that implements the sql.Scanner interface
// check different types received from various database drivers
// test the Scan method that implements the
// sql.Scanner interface
// check for the for different type of values
// that are possible to be received from the database
// drivers
// in normal operations the db driver (sqlite at least)
// will return an int64 if you specified a numeric format
a := Decimal{}
dbvalue := 54.33
expected := NewFromFloat(dbvalue)
scanHelper(t, dbvalue, expected)
err := a.Scan(dbvalue)
if err != nil {
// Scan failed... no need to test result value
t.Errorf("a.Scan(54.33) failed with message: %s", err)
} else {
// Scan succeeded... test resulting values
if !a.Equal(expected) {
t.Errorf("%s does not equal to %s", a, expected)
}
}
// apparently MySQL 5.7.16 and returns these as float32 so we need
// to handle these as well
dbvalueFloat32 := float32(54.33)
expected = NewFromFloat(float64(dbvalueFloat32))
scanHelper(t, dbvalueFloat32, expected)
err = a.Scan(dbvalueFloat32)
if err != nil {
// Scan failed... no need to test result value
t.Errorf("a.Scan(54.33) failed with message: %s", err)
} else {
// Scan succeeded... test resulting values
if !a.Equal(expected) {
t.Errorf("%s does not equal to %s", a, expected)
}
}
// at least SQLite returns an int64 when 0 is stored in the db
// and you specified a numeric format on the schema
dbvalueInt := int64(0)
expected = New(dbvalueInt, 0)
scanHelper(t, dbvalueInt, expected)
// also test uint64
dbvalueUint64 := uint64(2)
expected = New(2, 0)
scanHelper(t, dbvalueUint64, expected)
err = a.Scan(dbvalueInt)
if err != nil {
// Scan failed... no need to test result value
t.Errorf("a.Scan(0) failed with message: %s", err)
} else {
// Scan succeeded... test resulting values
if !a.Equal(expected) {
t.Errorf("%s does not equal to %s", a, expected)
}
}
// in case you specified a varchar in your SQL schema,
// the database driver may return either []byte or string
// the database driver will return byte slice []byte
valueStr := "535.666"
dbvalueStr := []byte(valueStr)
expected, err := NewFromString(valueStr)
expected, err = NewFromString(valueStr)
if err != nil {
t.Fatal(err)
}
scanHelper(t, dbvalueStr, expected)
scanHelper(t, valueStr, expected)
err = a.Scan(dbvalueStr)
if err != nil {
// Scan failed... no need to test result value
t.Errorf("a.Scan('535.666') failed with message: %s", err)
} else {
// Scan succeeded... test resulting values
if !a.Equal(expected) {
t.Errorf("%s does not equal to %s", a, expected)
}
}
// lib/pq can also return strings
expected, err = NewFromString(valueStr)
if err != nil {
t.Fatal(err)
}
err = a.Scan(valueStr)
if err != nil {
// Scan failed... no need to test result value
t.Errorf("a.Scan('535.666') failed with message: %s", err)
} else {
// Scan succeeded... test resulting values
if !a.Equal(expected) {
t.Errorf("%s does not equal to %s", a, expected)
}
}
type foo struct{}
a := Decimal{}
err = a.Scan(foo{})
if err == nil {
t.Errorf("a.Scan(Foo{}) should have thrown an error but did not")
@ -2595,241 +2621,21 @@ func TestDecimal_Cmp2(t *testing.T) {
}
}
func TestDecimal_Pow(t *testing.T) {
for _, testCase := range []struct {
Base string
Exponent string
Expected string
}{
{"0.0", "1.0", "0.0"},
{"0.0", "5.7", "0.0"},
{"0.0", "-3.2", "0.0"},
{"3.13", "0.0", "1.0"},
{"-591.5", "0.0", "1.0"},
{"3.0", "3.0", "27.0"},
{"3.0", "10.0", "59049.0"},
{"3.13", "5.0", "300.4150512793"},
{"4.0", "2.0", "16.0"},
{"4.0", "-2.0", "0.0625"},
{"629.25", "5.0", "98654323103449.5673828125"},
{"5.0", "5.73", "10118.08037159375"},
{"962.0", "3.2791", "6055212360.0000044205714144"},
{"5.69169126", "5.18515912", "8242.26344757948412597909547972726268869189399260047793106028930864"},
{"13.1337", "3.5196719618391835", "8636.856220644773844815693636723928750940666269885"},
{"67762386.283696923", "4.85917691669163916681738", "112761146905370140621385730157437443321.91755738117317148674362233906499698561022574811238435007575701773212242750262081945556470501"},
{"-3.0", "6.0", "729"},
{"-13.757", "5.0", "-492740.983929899460557"},
{"3.0", "-6.0", "0.0013717421124829"},
{"13.757", "-5.0", "0.000002029463821"},
{"66.12", "-7.61313", "0.000000000000013854086588876805036"},
{"6696871.12", "-2.61313", "0.000000000000000001455988684546983"},
{"-3.0", "-6.0", "0.0013717421124829"},
{"-13.757", "-5.0", "-0.000002029463821"},
} {
base, _ := NewFromString(testCase.Base)
exp, _ := NewFromString(testCase.Exponent)
expected, _ := NewFromString(testCase.Expected)
result := base.Pow(exp)
if result.Cmp(expected) != 0 {
t.Errorf("expected %s, got %s, for %s^%s", testCase.Expected, result.String(), testCase.Base, testCase.Exponent)
}
func TestPow(t *testing.T) {
a := New(4, 0)
b := New(2, 0)
x := a.Pow(b)
if x.String() != "16" {
t.Errorf("Error, saw %s", x.String())
}
}
func TestDecimal_PowWithPrecision(t *testing.T) {
for _, testCase := range []struct {
Base string
Exponent string
Precision int32
Expected string
}{
{"0.0", "1.0", 2, "0.0"},
{"0.0", "5.7", 2, "0.0"},
{"0.0", "-3.2", 2, "0.0"},
{"3.13", "0.0", 2, "1.0"},
{"-591.5", "0.0", 2, "1.0"},
{"3.0", "3.0", 2, "27.0"},
{"3.0", "10.0", 2, "59049.0"},
{"3.13", "5.0", 5, "300.4150512793"},
{"4.0", "2.0", 2, "16.0"},
{"4.0", "-2.0", 2, "0.06"},
{"4.0", "-2.0", 4, "0.0625"},
{"629.25", "5.0", 6, "98654323103449.5673828125"},
{"5.0", "5.73", 20, "10118.080371595019317118681359884375"},
{"962.0", "3.2791", 15, "6055212360.000004406551603058195732"},
{"5.69169126", "5.18515912", 4, "8242.26344757948412587366859330429895955552280978668983459852256"},
{"13.1337", "3.5196719618391835", 8, "8636.85622064477384481569363672392591908386390769375"},
{"67762386.283696923", "4.85917691669163916681738", 10, "112761146905370140621385730157437443321.917557381173174638304347353880676293576708009282115993465286373470882947470198597518762"},
{"-3.0", "6.0", 2, "729"},
{"-13.757", "5.0", 4, "-492740.983929899460557"},
{"3.0", "-6.0", 10, "0.0013717421"},
{"13.757", "-5.0", 20, "0.00000202946382098037"},
{"66.12", "-7.61313", 20, "0.00000000000001385381563049821591633907104023700216"},
{"6696871.12", "-2.61313", 24, "0.0000000000000000014558252733872790626400278983397459207418"},
{"-3.0", "-6.0", 8, "0.00137174"},
{"-13.757", "-5.0", 16, "-0.000002029463821"},
} {
base, _ := NewFromString(testCase.Base)
exp, _ := NewFromString(testCase.Exponent)
expected, _ := NewFromString(testCase.Expected)
result, _ := base.PowWithPrecision(exp, testCase.Precision)
if result.Cmp(expected) != 0 {
t.Errorf("expected %s, got %s, for %s^%s", testCase.Expected, result.String(), testCase.Base, testCase.Exponent)
}
}
}
func TestDecimal_PowWithPrecision_Infinity(t *testing.T) {
for _, testCase := range []struct {
Base string
Exponent string
}{
{"0.0", "0.0"},
{"0.0", "-2.0"},
{"0.0", "-4.6"},
{"-66.12", "7.61313"}, // Imaginary value
{"-5696871.12", "5.61313"}, // Imaginary value
} {
base, _ := NewFromString(testCase.Base)
exp, _ := NewFromString(testCase.Exponent)
_, err := base.PowWithPrecision(exp, 5)
if err == nil {
t.Errorf("lool it should be error")
}
}
}
func TestDecimal_PowWithPrecision_UndefinedResult(t *testing.T) {
base := RequireFromString("0")
exponent := RequireFromString("0")
_, err := base.PowWithPrecision(exponent, 4)
if err == nil {
t.Errorf("expected error, cannot be represent undefined value of 0**0")
}
}
func TestDecimal_PowWithPrecision_InfinityResult(t *testing.T) {
for _, testCase := range []struct {
Base string
Exponent string
}{
{"0.0", "-2.0"},
{"0.0", "-4.6"},
{"0.0", "-9239.671333"},
} {
base, _ := NewFromString(testCase.Base)
exp, _ := NewFromString(testCase.Exponent)
_, err := base.PowWithPrecision(exp, 4)
if err == nil {
t.Errorf("expected error, cannot represent infinity value of 0 ** y, where y < 0")
}
}
}
func TestDecimal_PowWithPrecision_ImaginaryResult(t *testing.T) {
for _, testCase := range []struct {
Base string
Exponent string
}{
{"-0.2261", "106.12"},
{"-66.12", "7.61313"},
{"-5696871.12", "5.61313"},
} {
base, _ := NewFromString(testCase.Base)
exp, _ := NewFromString(testCase.Exponent)
_, err := base.PowWithPrecision(exp, 4)
if err == nil {
t.Errorf("expected error, cannot represent imaginary value of x ** y, where x < 0 and y is non-integer decimal")
}
}
}
func TestDecimal_PowInt32(t *testing.T) {
for _, testCase := range []struct {
Decimal string
Exponent int32
Expected string
}{
{"0.0", 1, "0.0"},
{"3.13", 0, "1.0"},
{"-591.5", 0, "1.0"},
{"3.0", 3, "27.0"},
{"3.0", 10, "59049.0"},
{"3.13", 5, "300.4150512793"},
{"629.25", 5, "98654323103449.5673828125"},
{"-3.0", 6, "729"},
{"-13.757", 5, "-492740.983929899460557"},
{"3.0", -6, "0.0013717421124829"},
{"-13.757", -5, "-0.000002029463821"},
} {
base, _ := NewFromString(testCase.Decimal)
expected, _ := NewFromString(testCase.Expected)
result, _ := base.PowInt32(testCase.Exponent)
if result.Cmp(expected) != 0 {
t.Errorf("expected %s, got %s, for %s**%d", testCase.Expected, result.String(), testCase.Decimal, testCase.Exponent)
}
}
}
func TestDecimal_PowInt32_UndefinedResult(t *testing.T) {
base := RequireFromString("0")
_, err := base.PowInt32(0)
if err == nil {
t.Errorf("expected error, cannot be represent undefined value of 0**0")
}
}
func TestDecimal_PowBigInt(t *testing.T) {
for _, testCase := range []struct {
Decimal string
Exponent *big.Int
Expected string
}{
{"3.13", big.NewInt(0), "1.0"},
{"-591.5", big.NewInt(0), "1.0"},
{"3.0", big.NewInt(3), "27.0"},
{"3.0", big.NewInt(10), "59049.0"},
{"3.13", big.NewInt(5), "300.4150512793"},
{"629.25", big.NewInt(5), "98654323103449.5673828125"},
{"-3.0", big.NewInt(6), "729"},
{"-13.757", big.NewInt(5), "-492740.983929899460557"},
{"3.0", big.NewInt(-6), "0.0013717421124829"},
{"-13.757", big.NewInt(-5), "-0.000002029463821"},
} {
base, _ := NewFromString(testCase.Decimal)
expected, _ := NewFromString(testCase.Expected)
result, _ := base.PowBigInt(testCase.Exponent)
if result.Cmp(expected) != 0 {
t.Errorf("expected %s, got %s, for %s**%d", testCase.Expected, result.String(), testCase.Decimal, testCase.Exponent)
}
}
}
func TestDecimal_PowBigInt_UndefinedResult(t *testing.T) {
base := RequireFromString("0")
_, err := base.PowBigInt(big.NewInt(0))
if err == nil {
t.Errorf("expected error, undefined value of 0**0 cannot be represented")
func TestNegativePow(t *testing.T) {
a := New(4, 0)
b := New(-2, 0)
x := a.Pow(b)
if x.String() != "0.0625" {
t.Errorf("Error, saw %s", x.String())
}
}
@ -3016,7 +2822,6 @@ func TestDecimal_Ln(t *testing.T) {
{"839101.0351094726488848490572028502", 50, "13.64008640145229044389152437468283605382056561604272"},
{"5023583755703750094849.03519358513093500275017501750602739169823", 25, "49.9684305274348922267409953"},
{"5023583755703750094849.03519358513093500275017501750602739169823", -1, "50.0"},
{"66.12", 18, "4.191471272952823429"},
} {
d, _ := NewFromString(testCase.Dec)
expected, _ := NewFromString(testCase.Expected)

2
go.mod
View file

@ -1,3 +1,3 @@
module github.com/shopspring/decimal
go 1.10
go 1.7