Compare commits

...

11 commits

Author SHA1 Message Date
Ali J. Alaee
ab39525031
Merge cd5465e26b into 80ec940054 2024-04-09 00:11:40 +00:00
Egor Seredin
80ec940054
Add NewFromUint64 constructor (#352) 2024-04-08 16:38:20 +02:00
Mateusz Woś
2fa107d0fe
Remove production usage from docs (#362) 2024-04-07 20:33:44 +02:00
Philip Dubé
645a76e5b0
Optimize BigInt (#359) 2024-04-05 21:43:23 +02:00
Mateusz Woś
ed8f76e893
Drop support for Go versions older than 1.10 (#361)
* Drop support for Go versions older than 1.10
* Remove 1.18 from test suite
2024-04-05 21:41:05 +02:00
Mateusz Woś
0e69d5cd53
Run CI on both push to origin branches and pull requests (#360) 2024-04-04 16:35:31 +02:00
Philip Dubé
bf7794e1a8
Optimize NumDigits method (#356) 2024-04-04 16:14:38 +02:00
Philip Dubé
547861c49b
Avoid reallocation of initial slice in MarshalBinary (GobEncode) (#355) 2024-04-03 22:12:19 +02:00
Mateusz Woś
78289cc844
Add improved implementation of power operation (#358)
* Adjust Pow implementation
* Add PowWithPrecision method
* Add PowInt32 method
* Add PowBigInt method
2024-04-03 00:16:27 +02:00
Mateusz Woś
2b68c56fe0
Adjust Ln method to prevent infinity iteration loops (#357)
* Adjust Ln method to prevent infinity iteration loops
* Add test case for infinity loop
2024-04-01 22:02:25 +02:00
Ali
cd5465e26b PiNumber() implemented (with tests) issue #185 2021-02-05 20:07:12 +03:30
6 changed files with 753 additions and 69 deletions

View file

@ -1,11 +1,15 @@
name: ci
on: [push]
on:
push:
branches:
- master
pull_request:
jobs:
ci-job:
runs-on: ubuntu-latest
strategy:
matrix:
go: [ '1.7.x', '1.18', '1.19', '1.20', '1.21', '1.x' ]
go: [ '1.10.x', '1.19', '1.20', '1.21', '1.22', '1.x' ]
name: Go ${{ matrix.go }}
steps:
- uses: actions/checkout@v4

View file

@ -22,7 +22,7 @@ Run `go get github.com/shopspring/decimal`
## Requirements
Decimal library requires Go version `>=1.7`
Decimal library requires Go version `>=1.10`
## Usage
@ -63,11 +63,6 @@ func main() {
http://godoc.org/github.com/shopspring/decimal
## Production Usage
* [Spring](https://shopspring.com/), since August 14, 2014.
* If you are using this in production, please let us know!
## FAQ
#### Why don't you just use float64?

View file

@ -43,6 +43,20 @@ import (
// d4.String() // output: "0.667"
var DivisionPrecision = 16
// PowPrecisionNegativeExponent specifies the maximum precision of the result (digits after decimal point)
// when calculating decimal power. Only used for cases where the exponent is a negative number.
// This constant applies to Pow, PowInt32 and PowBigInt methods, PowWithPrecision method is not constrained by it.
//
// Example:
//
// d1, err := decimal.NewFromFloat(15.2).PowInt32(-2)
// d1.String() // output: "0.0043282548476454"
//
// decimal.PowPrecisionNegativeExponent = 24
// d2, err := decimal.NewFromFloat(15.2).PowInt32(-2)
// d2.String() // output: "0.004328254847645429362881"
var PowPrecisionNegativeExponent = 16
// MarshalJSONWithoutQuotes should be set to true if you want the decimal to
// be JSON marshaled as a number, instead of as a string.
// WARNING: this is dangerous for decimals with many digits, since many JSON
@ -116,6 +130,18 @@ func NewFromInt32(value int32) Decimal {
}
}
// NewFromUint64 converts an uint64 to Decimal.
//
// Example:
//
// NewFromUint64(123).String() // output: "123"
func NewFromUint64(value uint64) Decimal {
return Decimal{
value: new(big.Int).SetUint64(value),
exp: 0,
}
}
// NewFromBigInt returns a new Decimal from a big.Int, value * 10 ^ exp
func NewFromBigInt(value *big.Int, exp int32) Decimal {
return Decimal{
@ -129,11 +155,10 @@ func NewFromBigInt(value *big.Int, exp int32) Decimal {
//
// Example:
//
// d1 := NewFromBigRat(big.NewRat(0, 1), 0) // output: "0"
// d2 := NewFromBigRat(big.NewRat(4, 5), 1) // output: "0.8"
// d3 := NewFromBigRat(big.NewRat(1000, 3), 3) // output: "333.333"
// d4 := NewFromBigRat(big.NewRat(2, 7), 4) // output: "0.2857"
//
// d1 := NewFromBigRat(big.NewRat(0, 1), 0) // output: "0"
// d2 := NewFromBigRat(big.NewRat(4, 5), 1) // output: "0.8"
// d3 := NewFromBigRat(big.NewRat(1000, 3), 3) // output: "333.333"
// d4 := NewFromBigRat(big.NewRat(2, 7), 4) // output: "0.2857"
func NewFromBigRat(value *big.Rat, precision int32) Decimal {
return Decimal{
value: new(big.Int).Set(value.Num()),
@ -650,20 +675,274 @@ func (d Decimal) Mod(d2 Decimal) Decimal {
return r
}
// Pow returns d to the power d2
// Pow returns d to the power of d2.
// When exponent is negative the returned decimal will have maximum precision of PowPrecisionNegativeExponent places after decimal point.
//
// Pow returns 0 (zero-value of Decimal) instead of error for power operation edge cases, to handle those edge cases use PowWithPrecision
// Edge cases not handled by Pow:
// - 0 ** 0 => undefined value
// - 0 ** y, where y < 0 => infinity
// - x ** y, where x < 0 and y is non-integer decimal => imaginary value
//
// Example:
//
// d1 := decimal.NewFromFloat(4.0)
// d2 := decimal.NewFromFloat(4.0)
// res1 := d1.Pow(d2)
// res1.String() // output: "256"
//
// d3 := decimal.NewFromFloat(5.0)
// d4 := decimal.NewFromFloat(5.73)
// res2 := d3.Pow(d4)
// res2.String() // output: "10118.08037125"
func (d Decimal) Pow(d2 Decimal) Decimal {
var temp Decimal
if d2.IntPart() == 0 {
return NewFromFloat(1)
baseSign := d.Sign()
expSign := d2.Sign()
if baseSign == 0 {
if expSign == 0 {
return Decimal{}
}
if expSign == 1 {
return Decimal{zeroInt, 0}
}
if expSign == -1 {
return Decimal{}
}
}
temp = d.Pow(d2.Div(NewFromFloat(2)))
if d2.IntPart()%2 == 0 {
return temp.Mul(temp)
if expSign == 0 {
return Decimal{oneInt, 0}
}
if d2.IntPart() > 0 {
return temp.Mul(temp).Mul(d)
// TODO: optimize extraction of fractional part
one := Decimal{oneInt, 0}
expIntPart, expFracPart := d2.QuoRem(one, 0)
if baseSign == -1 && !expFracPart.IsZero() {
return Decimal{}
}
return temp.Mul(temp).Div(d)
intPartPow, _ := d.PowBigInt(expIntPart.value)
// if exponent is an integer we don't need to calculate d1**frac(d2)
if expFracPart.value.Sign() == 0 {
return intPartPow
}
// TODO: optimize NumDigits for more performant precision adjustment
digitsBase := d.NumDigits()
digitsExponent := d2.NumDigits()
precision := digitsBase
if digitsExponent > precision {
precision += digitsExponent
}
precision += 6
// Calculate x ** frac(y), where
// x ** frac(y) = exp(ln(x ** frac(y)) = exp(ln(x) * frac(y))
fracPartPow, err := d.Abs().Ln(-d.exp + int32(precision))
if err != nil {
return Decimal{}
}
fracPartPow = fracPartPow.Mul(expFracPart)
fracPartPow, err = fracPartPow.ExpTaylor(-d.exp + int32(precision))
if err != nil {
return Decimal{}
}
// Join integer and fractional part,
// base ** (expBase + expFrac) = base ** expBase * base ** expFrac
res := intPartPow.Mul(fracPartPow)
return res
}
// PowWithPrecision returns d to the power of d2.
// Precision parameter specifies minimum precision of the result (digits after decimal point).
// Returned decimal is not rounded to 'precision' places after decimal point.
//
// PowWithPrecision returns error when:
// - 0 ** 0 => undefined value
// - 0 ** y, where y < 0 => infinity
// - x ** y, where x < 0 and y is non-integer decimal => imaginary value
//
// Example:
//
// d1 := decimal.NewFromFloat(4.0)
// d2 := decimal.NewFromFloat(4.0)
// res1, err := d1.PowWithPrecision(d2, 2)
// res1.String() // output: "256"
//
// d3 := decimal.NewFromFloat(5.0)
// d4 := decimal.NewFromFloat(5.73)
// res2, err := d3.PowWithPrecision(d4, 5)
// res2.String() // output: "10118.080371595015625"
//
// d5 := decimal.NewFromFloat(-3.0)
// d6 := decimal.NewFromFloat(-6.0)
// res3, err := d5.PowWithPrecision(d6, 10)
// res3.String() // output: "0.0013717421"
func (d Decimal) PowWithPrecision(d2 Decimal, precision int32) (Decimal, error) {
baseSign := d.Sign()
expSign := d2.Sign()
if baseSign == 0 {
if expSign == 0 {
return Decimal{}, fmt.Errorf("cannot represent undefined value of 0**0")
}
if expSign == 1 {
return Decimal{zeroInt, 0}, nil
}
if expSign == -1 {
return Decimal{}, fmt.Errorf("cannot represent infinity value of 0 ** y, where y < 0")
}
}
if expSign == 0 {
return Decimal{oneInt, 0}, nil
}
// TODO: optimize extraction of fractional part
one := Decimal{oneInt, 0}
expIntPart, expFracPart := d2.QuoRem(one, 0)
if baseSign == -1 && !expFracPart.IsZero() {
return Decimal{}, fmt.Errorf("cannot represent imaginary value of x ** y, where x < 0 and y is non-integer decimal")
}
intPartPow, _ := d.powBigIntWithPrecision(expIntPart.value, precision)
// if exponent is an integer we don't need to calculate d1**frac(d2)
if expFracPart.value.Sign() == 0 {
return intPartPow, nil
}
// TODO: optimize NumDigits for more performant precision adjustment
digitsBase := d.NumDigits()
digitsExponent := d2.NumDigits()
if int32(digitsBase) > precision {
precision = int32(digitsBase)
}
if int32(digitsExponent) > precision {
precision += int32(digitsExponent)
}
// increase precision by 10 to compensate for errors in further calculations
precision += 10
// Calculate x ** frac(y), where
// x ** frac(y) = exp(ln(x ** frac(y)) = exp(ln(x) * frac(y))
fracPartPow, err := d.Abs().Ln(precision)
if err != nil {
return Decimal{}, err
}
fracPartPow = fracPartPow.Mul(expFracPart)
fracPartPow, err = fracPartPow.ExpTaylor(precision)
if err != nil {
return Decimal{}, err
}
// Join integer and fractional part,
// base ** (expBase + expFrac) = base ** expBase * base ** expFrac
res := intPartPow.Mul(fracPartPow)
return res, nil
}
// PowInt32 returns d to the power of exp, where exp is int32.
// Only returns error when d and exp is 0, thus result is undefined.
//
// When exponent is negative the returned decimal will have maximum precision of PowPrecisionNegativeExponent places after decimal point.
//
// Example:
//
// d1, err := decimal.NewFromFloat(4.0).PowInt32(4)
// d1.String() // output: "256"
//
// d2, err := decimal.NewFromFloat(3.13).PowInt32(5)
// d2.String() // output: "300.4150512793"
func (d Decimal) PowInt32(exp int32) (Decimal, error) {
if d.IsZero() && exp == 0 {
return Decimal{}, fmt.Errorf("cannot represent undefined value of 0**0")
}
isExpNeg := exp < 0
exp = abs(exp)
n, result := d, New(1, 0)
for exp > 0 {
if exp%2 == 1 {
result = result.Mul(n)
}
exp /= 2
if exp > 0 {
n = n.Mul(n)
}
}
if isExpNeg {
return New(1, 0).DivRound(result, int32(PowPrecisionNegativeExponent)), nil
}
return result, nil
}
// PowBigInt returns d to the power of exp, where exp is big.Int.
// Only returns error when d and exp is 0, thus result is undefined.
//
// When exponent is negative the returned decimal will have maximum precision of PowPrecisionNegativeExponent places after decimal point.
//
// Example:
//
// d1, err := decimal.NewFromFloat(3.0).PowBigInt(big.NewInt(3))
// d1.String() // output: "27"
//
// d2, err := decimal.NewFromFloat(629.25).PowBigInt(big.NewInt(5))
// d2.String() // output: "98654323103449.5673828125"
func (d Decimal) PowBigInt(exp *big.Int) (Decimal, error) {
return d.powBigIntWithPrecision(exp, int32(PowPrecisionNegativeExponent))
}
func (d Decimal) powBigIntWithPrecision(exp *big.Int, precision int32) (Decimal, error) {
if d.IsZero() && exp.Sign() == 0 {
return Decimal{}, fmt.Errorf("cannot represent undefined value of 0**0")
}
tmpExp := new(big.Int).Set(exp)
isExpNeg := exp.Sign() < 0
if isExpNeg {
tmpExp.Abs(tmpExp)
}
n, result := d, New(1, 0)
for tmpExp.Sign() > 0 {
if tmpExp.Bit(0) == 1 {
result = result.Mul(n)
}
tmpExp.Rsh(tmpExp, 1)
if tmpExp.Sign() > 0 {
n = n.Mul(n)
}
}
if isExpNeg {
return New(1, 0).DivRound(result, precision), nil
}
return result, nil
}
// ExpHullAbrham calculates the natural exponent of decimal (e to the power of d) using Hull-Abraham algorithm.
@ -920,7 +1199,10 @@ func (d Decimal) Ln(precision int32) (Decimal, error) {
// Halley's Iteration.
// Calculating n-th term of formula: a_(n+1) = a_n - 2 * (exp(a_n) - z) / (exp(a_n) + z),
// until the difference between current and next term is smaller than epsilon
for {
var prevStep Decimal
maxIters := calcPrecision*2 + 10
for i := int32(0); i < maxIters; i++ {
// exp(a_n)
comp3, _ = comp1.ExpTaylor(calcPrecision)
// exp(a_n) - z
@ -934,9 +1216,17 @@ func (d Decimal) Ln(precision int32) (Decimal, error) {
// comp1 = a_(n+1) = a_n - 2 * (exp(a_n) - z) / (exp(a_n) + z)
comp1 = comp1.Sub(comp3)
if prevStep.Add(comp3).IsZero() {
// If iteration steps oscillate we should return early and prevent an infinity loop
// NOTE(mwoss): This should be quite a rare case, returning error is not necessary
break
}
if comp3.Abs().Cmp(epsilon) <= 0 {
break
}
prevStep = comp3
}
}
@ -946,14 +1236,33 @@ func (d Decimal) Ln(precision int32) (Decimal, error) {
}
// NumDigits returns the number of digits of the decimal coefficient (d.Value)
// Note: Current implementation is extremely slow for large decimals and/or decimals with large fractional part
func (d Decimal) NumDigits() int {
d.ensureInitialized()
// Note(mwoss): It can be optimized, unnecessary cast of big.Int to string
if d.IsNegative() {
return len(d.value.String()) - 1
if d.value == nil {
return 1
}
return len(d.value.String())
if d.value.IsInt64() {
i64 := d.value.Int64()
// restrict fast path to integers with exact conversion to float64
if i64 <= (1<<53) && i64 >= -(1<<53) {
if i64 == 0 {
return 1
}
return int(math.Log10(math.Abs(float64(i64)))) + 1
}
}
estimatedNumDigits := int(float64(d.value.BitLen()) / math.Log2(10))
// estimatedNumDigits (lg10) may be off by 1, need to verify
digitsBigInt := big.NewInt(int64(estimatedNumDigits))
errorCorrectionUnit := digitsBigInt.Exp(tenInt, digitsBigInt, nil)
if d.value.CmpAbs(errorCorrectionUnit) >= 0 {
return estimatedNumDigits + 1
}
return estimatedNumDigits
}
// IsInteger returns true when decimal can be represented as an integer value, otherwise, it returns false.
@ -1109,9 +1418,7 @@ func (d Decimal) IntPart() int64 {
// BigInt returns integer component of the decimal as a BigInt.
func (d Decimal) BigInt() *big.Int {
scaledD := d.rescale(0)
i := &big.Int{}
i.SetString(scaledD.String(), 10)
return i
return scaledD.value
}
// BigFloat returns decimal as BigFloat.
@ -1506,19 +1813,18 @@ func (d *Decimal) UnmarshalBinary(data []byte) error {
// MarshalBinary implements the encoding.BinaryMarshaler interface.
func (d Decimal) MarshalBinary() (data []byte, err error) {
// Write the exponent first since it's a fixed size
v1 := make([]byte, 4)
binary.BigEndian.PutUint32(v1, uint32(d.exp))
// Add the value
var v2 []byte
if v2, err = d.value.GobEncode(); err != nil {
return
// exp is written first, but encode value first to know output size
var valueData []byte
if valueData, err = d.value.GobEncode(); err != nil {
return nil, err
}
// Write the exponent in front, since it's a fixed size
expData := make([]byte, 4, len(valueData)+4)
binary.BigEndian.PutUint32(expData, uint32(d.exp))
// Return the byte array
data = append(v1, v2...)
return
return append(expData, valueData...), nil
}
// Scan implements the sql.Scanner interface for database deserialization.
@ -1843,7 +2149,7 @@ func (d Decimal) xatan() Decimal {
func (d Decimal) satan() Decimal {
Morebits := NewFromFloat(6.123233995736765886130e-17) // pi/2 = PIO2 + Morebits
Tan3pio8 := NewFromFloat(2.41421356237309504880) // tan(3*pi/8)
pi := NewFromFloat(3.14159265358979323846264338327950288419716939937510582097494459)
pi := PiNumber()
if d.LessThanOrEqual(NewFromFloat(0.66)) {
return d.xatan()
@ -2026,3 +2332,9 @@ func (d Decimal) Tan() Decimal {
}
return y
}
//PiNumber Returns Pi Number For Calculations
func PiNumber() Decimal {
pi, _ := NewFromString("3.14159265358979323846264338327950288419716939937510582097494459")
return pi
}

View file

@ -3,6 +3,7 @@ package decimal
import (
"fmt"
"math"
"math/big"
"math/rand"
"sort"
"strconv"
@ -120,6 +121,34 @@ func BenchmarkDecimal_RoundCash_Five(b *testing.B) {
}
}
func numDigits(b *testing.B, want int, val Decimal) {
b.Helper()
for i := 0; i < b.N; i++ {
if have := val.NumDigits(); have != want {
b.Fatalf("\nHave: %d\nWant: %d", have, want)
}
}
}
func BenchmarkDecimal_NumDigits10(b *testing.B) {
numDigits(b, 10, New(3478512345, -3))
}
func BenchmarkDecimal_NumDigits100(b *testing.B) {
s := make([]byte, 102)
for i := range s {
s[i] = byte('0' + i%10)
}
s[0] = '-'
s[100] = '.'
d, err := NewFromString(string(s))
if err != nil {
b.Log(d)
b.Error(err)
}
numDigits(b, 100, d)
}
func Benchmark_Cmp(b *testing.B) {
decimals := DecimalSlice([]Decimal{})
for i := 0; i < 1000000; i++ {
@ -131,7 +160,7 @@ func Benchmark_Cmp(b *testing.B) {
}
}
func Benchmark_decimal_Decimal_Add_different_precision(b *testing.B) {
func BenchmarkDecimal_Add_different_precision(b *testing.B) {
d1 := NewFromFloat(1000.123)
d2 := NewFromFloat(500).Mul(NewFromFloat(0.12))
@ -142,7 +171,7 @@ func Benchmark_decimal_Decimal_Add_different_precision(b *testing.B) {
}
}
func Benchmark_decimal_Decimal_Sub_different_precision(b *testing.B) {
func BenchmarkDecimal_Sub_different_precision(b *testing.B) {
d1 := NewFromFloat(1000.123)
d2 := NewFromFloat(500).Mul(NewFromFloat(0.12))
@ -153,7 +182,7 @@ func Benchmark_decimal_Decimal_Sub_different_precision(b *testing.B) {
}
}
func Benchmark_decimal_Decimal_Add_same_precision(b *testing.B) {
func BenchmarkDecimal_Add_same_precision(b *testing.B) {
d1 := NewFromFloat(1000.123)
d2 := NewFromFloat(500.123)
@ -164,7 +193,7 @@ func Benchmark_decimal_Decimal_Add_same_precision(b *testing.B) {
}
}
func Benchmark_decimal_Decimal_Sub_same_precision(b *testing.B) {
func BenchmarkDecimal_Sub_same_precision(b *testing.B) {
d1 := NewFromFloat(1000.123)
d2 := NewFromFloat(500.123)
@ -185,6 +214,41 @@ func BenchmarkDecimal_IsInteger(b *testing.B) {
}
}
func BenchmarkDecimal_Pow(b *testing.B) {
d1 := RequireFromString("5.2")
d2 := RequireFromString("6.3")
for i := 0; i < b.N; i++ {
d1.Pow(d2)
}
}
func BenchmarkDecimal_PowWithPrecision(b *testing.B) {
d1 := RequireFromString("5.2")
d2 := RequireFromString("6.3")
for i := 0; i < b.N; i++ {
_, _ = d1.PowWithPrecision(d2, 8)
}
}
func BenchmarkDecimal_PowInt32(b *testing.B) {
d1 := RequireFromString("5.2")
d2 := int32(10)
for i := 0; i < b.N; i++ {
_, _ = d1.PowInt32(d2)
}
}
func BenchmarkDecimal_PowBigInt(b *testing.B) {
d1 := RequireFromString("5.2")
d2 := big.NewInt(10)
for i := 0; i < b.N; i++ {
_, _ = d1.PowBigInt(d2)
}
}
func BenchmarkDecimal_NewFromString(b *testing.B) {
count := 72
prices := make([]string, 0, count)

View file

@ -153,6 +153,73 @@ func TestNewFromFloatRandom(t *testing.T) {
}
}
func TestPiNumber(t *testing.T) {
a := PiNumber()
b := New(-1234, 2)
if a.Cmp(b) != 1 {
t.Errorf("Error")
}
}
func TestPiNumberE(t *testing.T) {
a := PiNumber()
b := New(1274, 3)
c := New(1234, 4)
if a.Equal(b) {
t.Errorf("%q should equal %q", a, b)
}
if a.Equal(c) {
t.Errorf("%q should not equal %q", a, c)
}
// note, this block should be deprecated, here for backwards compatibility
if a.Equals(b) {
t.Errorf("%q should equal %q", a, b)
}
if !c.GreaterThan(b) {
t.Errorf("%q should be greater than %q", c, b)
}
if b.GreaterThan(c) {
t.Errorf("%q should not be greater than %q", b, c)
}
if a.GreaterThanOrEqual(b) {
t.Errorf("%q should be greater or equal %q", a, b)
}
if !c.GreaterThanOrEqual(b) {
t.Errorf("%q should be greater or equal %q", c, b)
}
if b.GreaterThanOrEqual(c) {
t.Errorf("%q should not be greater or equal %q", b, c)
}
if !b.LessThan(c) {
t.Errorf("%q should be less than %q", a, b)
}
if c.LessThan(b) {
t.Errorf("%q should not be less than %q", a, b)
}
if !a.LessThanOrEqual(b) {
t.Errorf("%q should be less than or equal %q", a, b)
}
if !b.LessThanOrEqual(c) {
t.Errorf("%q should be less than or equal %q", a, b)
}
if c.LessThanOrEqual(b) {
t.Errorf("%q should not be less than or equal %q", a, b)
}
}
func TestDpi_Cmp(t *testing.T) {
a := PiNumber()
b := PiNumber()
if a.Cmp(b) == -1 {
t.Errorf("Error")
}
}
func TestNewFromFloatQuick(t *testing.T) {
err := quick.Check(func(f float64) bool {
want, werr := NewFromString(strconv.FormatFloat(f, 'f', -1, 64))
@ -476,10 +543,11 @@ func TestNewFromFloatWithExponent(t *testing.T) {
func TestNewFromInt(t *testing.T) {
tests := map[int64]string{
0: "0",
1: "1",
323412345: "323412345",
9223372036854775807: "9223372036854775807",
0: "0",
1: "1",
323412345: "323412345",
9223372036854775807: "9223372036854775807",
-9223372036854775808: "-9223372036854775808",
}
// add negatives
@ -501,10 +569,11 @@ func TestNewFromInt(t *testing.T) {
func TestNewFromInt32(t *testing.T) {
tests := map[int32]string{
0: "0",
1: "1",
323412345: "323412345",
2147483647: "2147483647",
0: "0",
1: "1",
323412345: "323412345",
2147483647: "2147483647",
-2147483648: "-2147483648",
}
// add negatives
@ -524,6 +593,25 @@ func TestNewFromInt32(t *testing.T) {
}
}
func TestNewFromUint64(t *testing.T) {
tests := map[uint64]string{
0: "0",
1: "1",
323412345: "323412345",
9223372036854775807: "9223372036854775807",
18446744073709551615: "18446744073709551615",
}
for input, s := range tests {
d := NewFromUint64(input)
if d.String() != s {
t.Errorf("expected %s, got %s (%s, %d)",
s, d.String(),
d.value.String(), d.exp)
}
}
}
func TestNewFromBigIntWithExponent(t *testing.T) {
type Inp struct {
val *big.Int
@ -2621,21 +2709,241 @@ func TestDecimal_Cmp2(t *testing.T) {
}
}
func TestPow(t *testing.T) {
a := New(4, 0)
b := New(2, 0)
x := a.Pow(b)
if x.String() != "16" {
t.Errorf("Error, saw %s", x.String())
func TestDecimal_Pow(t *testing.T) {
for _, testCase := range []struct {
Base string
Exponent string
Expected string
}{
{"0.0", "1.0", "0.0"},
{"0.0", "5.7", "0.0"},
{"0.0", "-3.2", "0.0"},
{"3.13", "0.0", "1.0"},
{"-591.5", "0.0", "1.0"},
{"3.0", "3.0", "27.0"},
{"3.0", "10.0", "59049.0"},
{"3.13", "5.0", "300.4150512793"},
{"4.0", "2.0", "16.0"},
{"4.0", "-2.0", "0.0625"},
{"629.25", "5.0", "98654323103449.5673828125"},
{"5.0", "5.73", "10118.08037159375"},
{"962.0", "3.2791", "6055212360.0000044205714144"},
{"5.69169126", "5.18515912", "8242.26344757948412597909547972726268869189399260047793106028930864"},
{"13.1337", "3.5196719618391835", "8636.856220644773844815693636723928750940666269885"},
{"67762386.283696923", "4.85917691669163916681738", "112761146905370140621385730157437443321.91755738117317148674362233906499698561022574811238435007575701773212242750262081945556470501"},
{"-3.0", "6.0", "729"},
{"-13.757", "5.0", "-492740.983929899460557"},
{"3.0", "-6.0", "0.0013717421124829"},
{"13.757", "-5.0", "0.000002029463821"},
{"66.12", "-7.61313", "0.000000000000013854086588876805036"},
{"6696871.12", "-2.61313", "0.000000000000000001455988684546983"},
{"-3.0", "-6.0", "0.0013717421124829"},
{"-13.757", "-5.0", "-0.000002029463821"},
} {
base, _ := NewFromString(testCase.Base)
exp, _ := NewFromString(testCase.Exponent)
expected, _ := NewFromString(testCase.Expected)
result := base.Pow(exp)
if result.Cmp(expected) != 0 {
t.Errorf("expected %s, got %s, for %s^%s", testCase.Expected, result.String(), testCase.Base, testCase.Exponent)
}
}
}
func TestNegativePow(t *testing.T) {
a := New(4, 0)
b := New(-2, 0)
x := a.Pow(b)
if x.String() != "0.0625" {
t.Errorf("Error, saw %s", x.String())
func TestDecimal_PowWithPrecision(t *testing.T) {
for _, testCase := range []struct {
Base string
Exponent string
Precision int32
Expected string
}{
{"0.0", "1.0", 2, "0.0"},
{"0.0", "5.7", 2, "0.0"},
{"0.0", "-3.2", 2, "0.0"},
{"3.13", "0.0", 2, "1.0"},
{"-591.5", "0.0", 2, "1.0"},
{"3.0", "3.0", 2, "27.0"},
{"3.0", "10.0", 2, "59049.0"},
{"3.13", "5.0", 5, "300.4150512793"},
{"4.0", "2.0", 2, "16.0"},
{"4.0", "-2.0", 2, "0.06"},
{"4.0", "-2.0", 4, "0.0625"},
{"629.25", "5.0", 6, "98654323103449.5673828125"},
{"5.0", "5.73", 20, "10118.080371595019317118681359884375"},
{"962.0", "3.2791", 15, "6055212360.000004406551603058195732"},
{"5.69169126", "5.18515912", 4, "8242.26344757948412587366859330429895955552280978668983459852256"},
{"13.1337", "3.5196719618391835", 8, "8636.85622064477384481569363672392591908386390769375"},
{"67762386.283696923", "4.85917691669163916681738", 10, "112761146905370140621385730157437443321.917557381173174638304347353880676293576708009282115993465286373470882947470198597518762"},
{"-3.0", "6.0", 2, "729"},
{"-13.757", "5.0", 4, "-492740.983929899460557"},
{"3.0", "-6.0", 10, "0.0013717421"},
{"13.757", "-5.0", 20, "0.00000202946382098037"},
{"66.12", "-7.61313", 20, "0.00000000000001385381563049821591633907104023700216"},
{"6696871.12", "-2.61313", 24, "0.0000000000000000014558252733872790626400278983397459207418"},
{"-3.0", "-6.0", 8, "0.00137174"},
{"-13.757", "-5.0", 16, "-0.000002029463821"},
} {
base, _ := NewFromString(testCase.Base)
exp, _ := NewFromString(testCase.Exponent)
expected, _ := NewFromString(testCase.Expected)
result, _ := base.PowWithPrecision(exp, testCase.Precision)
if result.Cmp(expected) != 0 {
t.Errorf("expected %s, got %s, for %s^%s", testCase.Expected, result.String(), testCase.Base, testCase.Exponent)
}
}
}
func TestDecimal_PowWithPrecision_Infinity(t *testing.T) {
for _, testCase := range []struct {
Base string
Exponent string
}{
{"0.0", "0.0"},
{"0.0", "-2.0"},
{"0.0", "-4.6"},
{"-66.12", "7.61313"}, // Imaginary value
{"-5696871.12", "5.61313"}, // Imaginary value
} {
base, _ := NewFromString(testCase.Base)
exp, _ := NewFromString(testCase.Exponent)
_, err := base.PowWithPrecision(exp, 5)
if err == nil {
t.Errorf("lool it should be error")
}
}
}
func TestDecimal_PowWithPrecision_UndefinedResult(t *testing.T) {
base := RequireFromString("0")
exponent := RequireFromString("0")
_, err := base.PowWithPrecision(exponent, 4)
if err == nil {
t.Errorf("expected error, cannot be represent undefined value of 0**0")
}
}
func TestDecimal_PowWithPrecision_InfinityResult(t *testing.T) {
for _, testCase := range []struct {
Base string
Exponent string
}{
{"0.0", "-2.0"},
{"0.0", "-4.6"},
{"0.0", "-9239.671333"},
} {
base, _ := NewFromString(testCase.Base)
exp, _ := NewFromString(testCase.Exponent)
_, err := base.PowWithPrecision(exp, 4)
if err == nil {
t.Errorf("expected error, cannot represent infinity value of 0 ** y, where y < 0")
}
}
}
func TestDecimal_PowWithPrecision_ImaginaryResult(t *testing.T) {
for _, testCase := range []struct {
Base string
Exponent string
}{
{"-0.2261", "106.12"},
{"-66.12", "7.61313"},
{"-5696871.12", "5.61313"},
} {
base, _ := NewFromString(testCase.Base)
exp, _ := NewFromString(testCase.Exponent)
_, err := base.PowWithPrecision(exp, 4)
if err == nil {
t.Errorf("expected error, cannot represent imaginary value of x ** y, where x < 0 and y is non-integer decimal")
}
}
}
func TestDecimal_PowInt32(t *testing.T) {
for _, testCase := range []struct {
Decimal string
Exponent int32
Expected string
}{
{"0.0", 1, "0.0"},
{"3.13", 0, "1.0"},
{"-591.5", 0, "1.0"},
{"3.0", 3, "27.0"},
{"3.0", 10, "59049.0"},
{"3.13", 5, "300.4150512793"},
{"629.25", 5, "98654323103449.5673828125"},
{"-3.0", 6, "729"},
{"-13.757", 5, "-492740.983929899460557"},
{"3.0", -6, "0.0013717421124829"},
{"-13.757", -5, "-0.000002029463821"},
} {
base, _ := NewFromString(testCase.Decimal)
expected, _ := NewFromString(testCase.Expected)
result, _ := base.PowInt32(testCase.Exponent)
if result.Cmp(expected) != 0 {
t.Errorf("expected %s, got %s, for %s**%d", testCase.Expected, result.String(), testCase.Decimal, testCase.Exponent)
}
}
}
func TestDecimal_PowInt32_UndefinedResult(t *testing.T) {
base := RequireFromString("0")
_, err := base.PowInt32(0)
if err == nil {
t.Errorf("expected error, cannot be represent undefined value of 0**0")
}
}
func TestDecimal_PowBigInt(t *testing.T) {
for _, testCase := range []struct {
Decimal string
Exponent *big.Int
Expected string
}{
{"3.13", big.NewInt(0), "1.0"},
{"-591.5", big.NewInt(0), "1.0"},
{"3.0", big.NewInt(3), "27.0"},
{"3.0", big.NewInt(10), "59049.0"},
{"3.13", big.NewInt(5), "300.4150512793"},
{"629.25", big.NewInt(5), "98654323103449.5673828125"},
{"-3.0", big.NewInt(6), "729"},
{"-13.757", big.NewInt(5), "-492740.983929899460557"},
{"3.0", big.NewInt(-6), "0.0013717421124829"},
{"-13.757", big.NewInt(-5), "-0.000002029463821"},
} {
base, _ := NewFromString(testCase.Decimal)
expected, _ := NewFromString(testCase.Expected)
result, _ := base.PowBigInt(testCase.Exponent)
if result.Cmp(expected) != 0 {
t.Errorf("expected %s, got %s, for %s**%d", testCase.Expected, result.String(), testCase.Decimal, testCase.Exponent)
}
}
}
func TestDecimal_PowBigInt_UndefinedResult(t *testing.T) {
base := RequireFromString("0")
_, err := base.PowBigInt(big.NewInt(0))
if err == nil {
t.Errorf("expected error, undefined value of 0**0 cannot be represented")
}
}
@ -2822,6 +3130,7 @@ func TestDecimal_Ln(t *testing.T) {
{"839101.0351094726488848490572028502", 50, "13.64008640145229044389152437468283605382056561604272"},
{"5023583755703750094849.03519358513093500275017501750602739169823", 25, "49.9684305274348922267409953"},
{"5023583755703750094849.03519358513093500275017501750602739169823", -1, "50.0"},
{"66.12", 18, "4.191471272952823429"},
} {
d, _ := NewFromString(testCase.Dec)
expected, _ := NewFromString(testCase.Expected)

2
go.mod
View file

@ -1,3 +1,3 @@
module github.com/shopspring/decimal
go 1.7
go 1.10