Compare commits

...

19 commits

Author SHA1 Message Date
kempeng
34e25a494f
Merge aa8a681072 into a1bdfc355e 2024-04-25 00:14:50 +02:00
Mateusz Woś
a1bdfc355e
Release version 1.4.0 (#365) 2024-04-12 16:19:23 +02:00
Mateusz Woś
275e48eaef
Add docs section with alternative libraries (#363) 2024-04-12 15:40:04 +02:00
Philip Dubé
dd603cbbbd
Support scanning uint64 (#364) 2024-04-12 15:35:56 +02:00
Egor Seredin
80ec940054
Add NewFromUint64 constructor (#352) 2024-04-08 16:38:20 +02:00
Mateusz Woś
2fa107d0fe
Remove production usage from docs (#362) 2024-04-07 20:33:44 +02:00
Philip Dubé
645a76e5b0
Optimize BigInt (#359) 2024-04-05 21:43:23 +02:00
Mateusz Woś
ed8f76e893
Drop support for Go versions older than 1.10 (#361)
* Drop support for Go versions older than 1.10
* Remove 1.18 from test suite
2024-04-05 21:41:05 +02:00
Mateusz Woś
0e69d5cd53
Run CI on both push to origin branches and pull requests (#360) 2024-04-04 16:35:31 +02:00
Philip Dubé
bf7794e1a8
Optimize NumDigits method (#356) 2024-04-04 16:14:38 +02:00
Philip Dubé
547861c49b
Avoid reallocation of initial slice in MarshalBinary (GobEncode) (#355) 2024-04-03 22:12:19 +02:00
Mateusz Woś
78289cc844
Add improved implementation of power operation (#358)
* Adjust Pow implementation
* Add PowWithPrecision method
* Add PowInt32 method
* Add PowBigInt method
2024-04-03 00:16:27 +02:00
Mateusz Woś
2b68c56fe0
Adjust Ln method to prevent infinity iteration loops (#357)
* Adjust Ln method to prevent infinity iteration loops
* Add test case for infinity loop
2024-04-01 22:02:25 +02:00
Geert van Kempen
aa8a681072 added sqrt testing 2018-08-19 14:00:50 -04:00
Geert van Kempen
3954520093 native square root function for decimal 2018-08-19 10:54:18 -04:00
Geert van Kempen
53965de086 additional decimal numbers 2018-08-19 10:44:54 -04:00
Geert van Kempen
8db667fde7 Merge branch 'patch-2' 2018-08-19 10:20:36 -04:00
kempeng
e20cd0e503
Create zero.go
Zero.go defines convenience functions for testing decimal values with the zero value. These functions make code using decimal easier to read in my opinion. EqualZero() could be renamed into IsZero()
2018-07-25 23:22:11 -04:00
kempeng
70eaa6c75d
Create helpers.go
helpers.go defines several helper functions for the create of new decimal's from int's that make code using decimal a bit easier to read. Further more it implements a.Max() and a.Min() functions in the same fashion as other arithmetic functions like Add & Sub. (the decimal package already implements Max(d, d2....) and Min(), but these two helper functions are complementary to them.
Finally a.Float() is a convenience function for a.Float64() that ignore the precise bool, allowing inline use of the float conversion function
2018-07-25 23:19:28 -04:00
12 changed files with 1003 additions and 143 deletions

View file

@ -1,11 +1,15 @@
name: ci
on: [push]
on:
push:
branches:
- master
pull_request:
jobs:
ci-job:
runs-on: ubuntu-latest
strategy:
matrix:
go: [ '1.7.x', '1.18', '1.19', '1.20', '1.21', '1.x' ]
go: [ '1.10.x', '1.19', '1.20', '1.21', '1.22', '1.x' ]
name: Go ${{ matrix.go }}
steps:
- uses: actions/checkout@v4

View file

@ -1,3 +1,30 @@
## Decimal v1.4.0
#### BREAKING
- Drop support for Go version older than 1.10 [#361](https://github.com/shopspring/decimal/pull/361)
#### FEATURES
- Add implementation of natural logarithm [#339](https://github.com/shopspring/decimal/pull/339) [#357](https://github.com/shopspring/decimal/pull/357)
- Add improved implementation of power operation [#358](https://github.com/shopspring/decimal/pull/358)
- Add Compare method which forwards calls to Cmp [#346](https://github.com/shopspring/decimal/pull/346)
- Add NewFromBigRat constructor [#288](https://github.com/shopspring/decimal/pull/288)
- Add NewFromUint64 constructor [#352](https://github.com/shopspring/decimal/pull/352)
#### ENHANCEMENTS
- Migrate to Github Actions [#245](https://github.com/shopspring/decimal/pull/245) [#340](https://github.com/shopspring/decimal/pull/340)
- Fix examples for RoundDown, RoundFloor, RoundUp, and RoundCeil [#285](https://github.com/shopspring/decimal/pull/285) [#328](https://github.com/shopspring/decimal/pull/328) [#341](https://github.com/shopspring/decimal/pull/341)
- Use Godoc standard to mark deprecated Equals and StringScaled methods [#342](https://github.com/shopspring/decimal/pull/342)
- Removed unnecessary min function for RescalePair method [#265](https://github.com/shopspring/decimal/pull/265)
- Avoid reallocation of initial slice in MarshalBinary (GobEncode) [#355](https://github.com/shopspring/decimal/pull/355)
- Optimize NumDigits method [#301](https://github.com/shopspring/decimal/pull/301) [#356](https://github.com/shopspring/decimal/pull/356)
- Optimize BigInt method [#359](https://github.com/shopspring/decimal/pull/359)
- Support scanning uint64 [#131](https://github.com/shopspring/decimal/pull/131) [#364](https://github.com/shopspring/decimal/pull/364)
- Add docs section with alternative libraries [#363](https://github.com/shopspring/decimal/pull/363)
#### BUGFIXES
- Fix incorrect calculation of decimal modulo [#258](https://github.com/shopspring/decimal/pull/258) [#317](https://github.com/shopspring/decimal/pull/317)
- Allocate new(big.Int) in Copy method to deeply clone it [#278](https://github.com/shopspring/decimal/pull/278)
- Fix overflow edge case in QuoRem method [#322](https://github.com/shopspring/decimal/pull/322)
## Decimal v1.3.1
#### ENHANCEMENTS

View file

@ -22,7 +22,12 @@ Run `go get github.com/shopspring/decimal`
## Requirements
Decimal library requires Go version `>=1.7`
Decimal library requires Go version `>=1.10`
## Documentation
http://godoc.org/github.com/shopspring/decimal
## Usage
@ -59,14 +64,16 @@ func main() {
}
```
## Documentation
## Alternative libraries
http://godoc.org/github.com/shopspring/decimal
When working with decimal numbers, you might face problems this library is not perfectly suited for.
Fortunately, thanks to the wonderful community we have a dozen other libraries that you can choose from.
Explore other alternatives to find the one that best fits your needs :)
## Production Usage
* [Spring](https://shopspring.com/), since August 14, 2014.
* If you are using this in production, please let us know!
* [cockroachdb/apd](https://github.com/cockroachdb/apd) - arbitrary precision, mutable and rich API similar to `big.Int`, more performant than this library
* [alpacahq/alpacadecimal](https://github.com/alpacahq/alpacadecimal) - high performance, low precision (12 digits), fully compatible API with this library
* [govalues/decimal](https://github.com/govalues/decimal) - high performance, zero-allocation, low precision (19 digits)
* [greatcloak/decimal](https://github.com/greatcloak/decimal) - fork focusing on billing and e-commerce web application related use cases, includes out-of-the-box BSON marshaling support
## FAQ

View file

@ -43,6 +43,20 @@ import (
// d4.String() // output: "0.667"
var DivisionPrecision = 16
// PowPrecisionNegativeExponent specifies the maximum precision of the result (digits after decimal point)
// when calculating decimal power. Only used for cases where the exponent is a negative number.
// This constant applies to Pow, PowInt32 and PowBigInt methods, PowWithPrecision method is not constrained by it.
//
// Example:
//
// d1, err := decimal.NewFromFloat(15.2).PowInt32(-2)
// d1.String() // output: "0.0043282548476454"
//
// decimal.PowPrecisionNegativeExponent = 24
// d2, err := decimal.NewFromFloat(15.2).PowInt32(-2)
// d2.String() // output: "0.004328254847645429362881"
var PowPrecisionNegativeExponent = 16
// MarshalJSONWithoutQuotes should be set to true if you want the decimal to
// be JSON marshaled as a number, instead of as a string.
// WARNING: this is dangerous for decimals with many digits, since many JSON
@ -116,6 +130,18 @@ func NewFromInt32(value int32) Decimal {
}
}
// NewFromUint64 converts an uint64 to Decimal.
//
// Example:
//
// NewFromUint64(123).String() // output: "123"
func NewFromUint64(value uint64) Decimal {
return Decimal{
value: new(big.Int).SetUint64(value),
exp: 0,
}
}
// NewFromBigInt returns a new Decimal from a big.Int, value * 10 ^ exp
func NewFromBigInt(value *big.Int, exp int32) Decimal {
return Decimal{
@ -133,7 +159,6 @@ func NewFromBigInt(value *big.Int, exp int32) Decimal {
// d2 := NewFromBigRat(big.NewRat(4, 5), 1) // output: "0.8"
// d3 := NewFromBigRat(big.NewRat(1000, 3), 3) // output: "333.333"
// d4 := NewFromBigRat(big.NewRat(2, 7), 4) // output: "0.2857"
//
func NewFromBigRat(value *big.Rat, precision int32) Decimal {
return Decimal{
value: new(big.Int).Set(value.Num()),
@ -650,20 +675,274 @@ func (d Decimal) Mod(d2 Decimal) Decimal {
return r
}
// Pow returns d to the power d2
// Pow returns d to the power of d2.
// When exponent is negative the returned decimal will have maximum precision of PowPrecisionNegativeExponent places after decimal point.
//
// Pow returns 0 (zero-value of Decimal) instead of error for power operation edge cases, to handle those edge cases use PowWithPrecision
// Edge cases not handled by Pow:
// - 0 ** 0 => undefined value
// - 0 ** y, where y < 0 => infinity
// - x ** y, where x < 0 and y is non-integer decimal => imaginary value
//
// Example:
//
// d1 := decimal.NewFromFloat(4.0)
// d2 := decimal.NewFromFloat(4.0)
// res1 := d1.Pow(d2)
// res1.String() // output: "256"
//
// d3 := decimal.NewFromFloat(5.0)
// d4 := decimal.NewFromFloat(5.73)
// res2 := d3.Pow(d4)
// res2.String() // output: "10118.08037125"
func (d Decimal) Pow(d2 Decimal) Decimal {
var temp Decimal
if d2.IntPart() == 0 {
return NewFromFloat(1)
baseSign := d.Sign()
expSign := d2.Sign()
if baseSign == 0 {
if expSign == 0 {
return Decimal{}
}
temp = d.Pow(d2.Div(NewFromFloat(2)))
if d2.IntPart()%2 == 0 {
return temp.Mul(temp)
if expSign == 1 {
return Decimal{zeroInt, 0}
}
if d2.IntPart() > 0 {
return temp.Mul(temp).Mul(d)
if expSign == -1 {
return Decimal{}
}
return temp.Mul(temp).Div(d)
}
if expSign == 0 {
return Decimal{oneInt, 0}
}
// TODO: optimize extraction of fractional part
one := Decimal{oneInt, 0}
expIntPart, expFracPart := d2.QuoRem(one, 0)
if baseSign == -1 && !expFracPart.IsZero() {
return Decimal{}
}
intPartPow, _ := d.PowBigInt(expIntPart.value)
// if exponent is an integer we don't need to calculate d1**frac(d2)
if expFracPart.value.Sign() == 0 {
return intPartPow
}
// TODO: optimize NumDigits for more performant precision adjustment
digitsBase := d.NumDigits()
digitsExponent := d2.NumDigits()
precision := digitsBase
if digitsExponent > precision {
precision += digitsExponent
}
precision += 6
// Calculate x ** frac(y), where
// x ** frac(y) = exp(ln(x ** frac(y)) = exp(ln(x) * frac(y))
fracPartPow, err := d.Abs().Ln(-d.exp + int32(precision))
if err != nil {
return Decimal{}
}
fracPartPow = fracPartPow.Mul(expFracPart)
fracPartPow, err = fracPartPow.ExpTaylor(-d.exp + int32(precision))
if err != nil {
return Decimal{}
}
// Join integer and fractional part,
// base ** (expBase + expFrac) = base ** expBase * base ** expFrac
res := intPartPow.Mul(fracPartPow)
return res
}
// PowWithPrecision returns d to the power of d2.
// Precision parameter specifies minimum precision of the result (digits after decimal point).
// Returned decimal is not rounded to 'precision' places after decimal point.
//
// PowWithPrecision returns error when:
// - 0 ** 0 => undefined value
// - 0 ** y, where y < 0 => infinity
// - x ** y, where x < 0 and y is non-integer decimal => imaginary value
//
// Example:
//
// d1 := decimal.NewFromFloat(4.0)
// d2 := decimal.NewFromFloat(4.0)
// res1, err := d1.PowWithPrecision(d2, 2)
// res1.String() // output: "256"
//
// d3 := decimal.NewFromFloat(5.0)
// d4 := decimal.NewFromFloat(5.73)
// res2, err := d3.PowWithPrecision(d4, 5)
// res2.String() // output: "10118.080371595015625"
//
// d5 := decimal.NewFromFloat(-3.0)
// d6 := decimal.NewFromFloat(-6.0)
// res3, err := d5.PowWithPrecision(d6, 10)
// res3.String() // output: "0.0013717421"
func (d Decimal) PowWithPrecision(d2 Decimal, precision int32) (Decimal, error) {
baseSign := d.Sign()
expSign := d2.Sign()
if baseSign == 0 {
if expSign == 0 {
return Decimal{}, fmt.Errorf("cannot represent undefined value of 0**0")
}
if expSign == 1 {
return Decimal{zeroInt, 0}, nil
}
if expSign == -1 {
return Decimal{}, fmt.Errorf("cannot represent infinity value of 0 ** y, where y < 0")
}
}
if expSign == 0 {
return Decimal{oneInt, 0}, nil
}
// TODO: optimize extraction of fractional part
one := Decimal{oneInt, 0}
expIntPart, expFracPart := d2.QuoRem(one, 0)
if baseSign == -1 && !expFracPart.IsZero() {
return Decimal{}, fmt.Errorf("cannot represent imaginary value of x ** y, where x < 0 and y is non-integer decimal")
}
intPartPow, _ := d.powBigIntWithPrecision(expIntPart.value, precision)
// if exponent is an integer we don't need to calculate d1**frac(d2)
if expFracPart.value.Sign() == 0 {
return intPartPow, nil
}
// TODO: optimize NumDigits for more performant precision adjustment
digitsBase := d.NumDigits()
digitsExponent := d2.NumDigits()
if int32(digitsBase) > precision {
precision = int32(digitsBase)
}
if int32(digitsExponent) > precision {
precision += int32(digitsExponent)
}
// increase precision by 10 to compensate for errors in further calculations
precision += 10
// Calculate x ** frac(y), where
// x ** frac(y) = exp(ln(x ** frac(y)) = exp(ln(x) * frac(y))
fracPartPow, err := d.Abs().Ln(precision)
if err != nil {
return Decimal{}, err
}
fracPartPow = fracPartPow.Mul(expFracPart)
fracPartPow, err = fracPartPow.ExpTaylor(precision)
if err != nil {
return Decimal{}, err
}
// Join integer and fractional part,
// base ** (expBase + expFrac) = base ** expBase * base ** expFrac
res := intPartPow.Mul(fracPartPow)
return res, nil
}
// PowInt32 returns d to the power of exp, where exp is int32.
// Only returns error when d and exp is 0, thus result is undefined.
//
// When exponent is negative the returned decimal will have maximum precision of PowPrecisionNegativeExponent places after decimal point.
//
// Example:
//
// d1, err := decimal.NewFromFloat(4.0).PowInt32(4)
// d1.String() // output: "256"
//
// d2, err := decimal.NewFromFloat(3.13).PowInt32(5)
// d2.String() // output: "300.4150512793"
func (d Decimal) PowInt32(exp int32) (Decimal, error) {
if d.IsZero() && exp == 0 {
return Decimal{}, fmt.Errorf("cannot represent undefined value of 0**0")
}
isExpNeg := exp < 0
exp = abs(exp)
n, result := d, New(1, 0)
for exp > 0 {
if exp%2 == 1 {
result = result.Mul(n)
}
exp /= 2
if exp > 0 {
n = n.Mul(n)
}
}
if isExpNeg {
return New(1, 0).DivRound(result, int32(PowPrecisionNegativeExponent)), nil
}
return result, nil
}
// PowBigInt returns d to the power of exp, where exp is big.Int.
// Only returns error when d and exp is 0, thus result is undefined.
//
// When exponent is negative the returned decimal will have maximum precision of PowPrecisionNegativeExponent places after decimal point.
//
// Example:
//
// d1, err := decimal.NewFromFloat(3.0).PowBigInt(big.NewInt(3))
// d1.String() // output: "27"
//
// d2, err := decimal.NewFromFloat(629.25).PowBigInt(big.NewInt(5))
// d2.String() // output: "98654323103449.5673828125"
func (d Decimal) PowBigInt(exp *big.Int) (Decimal, error) {
return d.powBigIntWithPrecision(exp, int32(PowPrecisionNegativeExponent))
}
func (d Decimal) powBigIntWithPrecision(exp *big.Int, precision int32) (Decimal, error) {
if d.IsZero() && exp.Sign() == 0 {
return Decimal{}, fmt.Errorf("cannot represent undefined value of 0**0")
}
tmpExp := new(big.Int).Set(exp)
isExpNeg := exp.Sign() < 0
if isExpNeg {
tmpExp.Abs(tmpExp)
}
n, result := d, New(1, 0)
for tmpExp.Sign() > 0 {
if tmpExp.Bit(0) == 1 {
result = result.Mul(n)
}
tmpExp.Rsh(tmpExp, 1)
if tmpExp.Sign() > 0 {
n = n.Mul(n)
}
}
if isExpNeg {
return New(1, 0).DivRound(result, precision), nil
}
return result, nil
}
// ExpHullAbrham calculates the natural exponent of decimal (e to the power of d) using Hull-Abraham algorithm.
@ -920,7 +1199,10 @@ func (d Decimal) Ln(precision int32) (Decimal, error) {
// Halley's Iteration.
// Calculating n-th term of formula: a_(n+1) = a_n - 2 * (exp(a_n) - z) / (exp(a_n) + z),
// until the difference between current and next term is smaller than epsilon
for {
var prevStep Decimal
maxIters := calcPrecision*2 + 10
for i := int32(0); i < maxIters; i++ {
// exp(a_n)
comp3, _ = comp1.ExpTaylor(calcPrecision)
// exp(a_n) - z
@ -934,9 +1216,17 @@ func (d Decimal) Ln(precision int32) (Decimal, error) {
// comp1 = a_(n+1) = a_n - 2 * (exp(a_n) - z) / (exp(a_n) + z)
comp1 = comp1.Sub(comp3)
if prevStep.Add(comp3).IsZero() {
// If iteration steps oscillate we should return early and prevent an infinity loop
// NOTE(mwoss): This should be quite a rare case, returning error is not necessary
break
}
if comp3.Abs().Cmp(epsilon) <= 0 {
break
}
prevStep = comp3
}
}
@ -946,14 +1236,33 @@ func (d Decimal) Ln(precision int32) (Decimal, error) {
}
// NumDigits returns the number of digits of the decimal coefficient (d.Value)
// Note: Current implementation is extremely slow for large decimals and/or decimals with large fractional part
func (d Decimal) NumDigits() int {
d.ensureInitialized()
// Note(mwoss): It can be optimized, unnecessary cast of big.Int to string
if d.IsNegative() {
return len(d.value.String()) - 1
if d.value == nil {
return 1
}
return len(d.value.String())
if d.value.IsInt64() {
i64 := d.value.Int64()
// restrict fast path to integers with exact conversion to float64
if i64 <= (1<<53) && i64 >= -(1<<53) {
if i64 == 0 {
return 1
}
return int(math.Log10(math.Abs(float64(i64)))) + 1
}
}
estimatedNumDigits := int(float64(d.value.BitLen()) / math.Log2(10))
// estimatedNumDigits (lg10) may be off by 1, need to verify
digitsBigInt := big.NewInt(int64(estimatedNumDigits))
errorCorrectionUnit := digitsBigInt.Exp(tenInt, digitsBigInt, nil)
if d.value.CmpAbs(errorCorrectionUnit) >= 0 {
return estimatedNumDigits + 1
}
return estimatedNumDigits
}
// IsInteger returns true when decimal can be represented as an integer value, otherwise, it returns false.
@ -1109,9 +1418,7 @@ func (d Decimal) IntPart() int64 {
// BigInt returns integer component of the decimal as a BigInt.
func (d Decimal) BigInt() *big.Int {
scaledD := d.rescale(0)
i := &big.Int{}
i.SetString(scaledD.String(), 10)
return i
return scaledD.value
}
// BigFloat returns decimal as BigFloat.
@ -1506,19 +1813,18 @@ func (d *Decimal) UnmarshalBinary(data []byte) error {
// MarshalBinary implements the encoding.BinaryMarshaler interface.
func (d Decimal) MarshalBinary() (data []byte, err error) {
// Write the exponent first since it's a fixed size
v1 := make([]byte, 4)
binary.BigEndian.PutUint32(v1, uint32(d.exp))
// Add the value
var v2 []byte
if v2, err = d.value.GobEncode(); err != nil {
return
// exp is written first, but encode value first to know output size
var valueData []byte
if valueData, err = d.value.GobEncode(); err != nil {
return nil, err
}
// Write the exponent in front, since it's a fixed size
expData := make([]byte, 4, len(valueData)+4)
binary.BigEndian.PutUint32(expData, uint32(d.exp))
// Return the byte array
data = append(v1, v2...)
return
return append(expData, valueData...), nil
}
// Scan implements the sql.Scanner interface for database deserialization.
@ -1541,6 +1847,11 @@ func (d *Decimal) Scan(value interface{}) error {
*d = New(v, 0)
return nil
case uint64:
// while clickhouse may send 0 in db as uint64
*d = NewFromUint64(v)
return nil
default:
// default is trying to interpret value stored as string
str, err := unquoteIfQuoted(v)

View file

@ -3,6 +3,7 @@ package decimal
import (
"fmt"
"math"
"math/big"
"math/rand"
"sort"
"strconv"
@ -120,6 +121,34 @@ func BenchmarkDecimal_RoundCash_Five(b *testing.B) {
}
}
func numDigits(b *testing.B, want int, val Decimal) {
b.Helper()
for i := 0; i < b.N; i++ {
if have := val.NumDigits(); have != want {
b.Fatalf("\nHave: %d\nWant: %d", have, want)
}
}
}
func BenchmarkDecimal_NumDigits10(b *testing.B) {
numDigits(b, 10, New(3478512345, -3))
}
func BenchmarkDecimal_NumDigits100(b *testing.B) {
s := make([]byte, 102)
for i := range s {
s[i] = byte('0' + i%10)
}
s[0] = '-'
s[100] = '.'
d, err := NewFromString(string(s))
if err != nil {
b.Log(d)
b.Error(err)
}
numDigits(b, 100, d)
}
func Benchmark_Cmp(b *testing.B) {
decimals := DecimalSlice([]Decimal{})
for i := 0; i < 1000000; i++ {
@ -131,7 +160,7 @@ func Benchmark_Cmp(b *testing.B) {
}
}
func Benchmark_decimal_Decimal_Add_different_precision(b *testing.B) {
func BenchmarkDecimal_Add_different_precision(b *testing.B) {
d1 := NewFromFloat(1000.123)
d2 := NewFromFloat(500).Mul(NewFromFloat(0.12))
@ -142,7 +171,7 @@ func Benchmark_decimal_Decimal_Add_different_precision(b *testing.B) {
}
}
func Benchmark_decimal_Decimal_Sub_different_precision(b *testing.B) {
func BenchmarkDecimal_Sub_different_precision(b *testing.B) {
d1 := NewFromFloat(1000.123)
d2 := NewFromFloat(500).Mul(NewFromFloat(0.12))
@ -153,7 +182,7 @@ func Benchmark_decimal_Decimal_Sub_different_precision(b *testing.B) {
}
}
func Benchmark_decimal_Decimal_Add_same_precision(b *testing.B) {
func BenchmarkDecimal_Add_same_precision(b *testing.B) {
d1 := NewFromFloat(1000.123)
d2 := NewFromFloat(500.123)
@ -164,7 +193,7 @@ func Benchmark_decimal_Decimal_Add_same_precision(b *testing.B) {
}
}
func Benchmark_decimal_Decimal_Sub_same_precision(b *testing.B) {
func BenchmarkDecimal_Sub_same_precision(b *testing.B) {
d1 := NewFromFloat(1000.123)
d2 := NewFromFloat(500.123)
@ -185,6 +214,41 @@ func BenchmarkDecimal_IsInteger(b *testing.B) {
}
}
func BenchmarkDecimal_Pow(b *testing.B) {
d1 := RequireFromString("5.2")
d2 := RequireFromString("6.3")
for i := 0; i < b.N; i++ {
d1.Pow(d2)
}
}
func BenchmarkDecimal_PowWithPrecision(b *testing.B) {
d1 := RequireFromString("5.2")
d2 := RequireFromString("6.3")
for i := 0; i < b.N; i++ {
_, _ = d1.PowWithPrecision(d2, 8)
}
}
func BenchmarkDecimal_PowInt32(b *testing.B) {
d1 := RequireFromString("5.2")
d2 := int32(10)
for i := 0; i < b.N; i++ {
_, _ = d1.PowInt32(d2)
}
}
func BenchmarkDecimal_PowBigInt(b *testing.B) {
d1 := RequireFromString("5.2")
d2 := big.NewInt(10)
for i := 0; i < b.N; i++ {
_, _ = d1.PowBigInt(d2)
}
}
func BenchmarkDecimal_NewFromString(b *testing.B) {
count := 72
prices := make([]string, 0, count)

View file

@ -480,6 +480,7 @@ func TestNewFromInt(t *testing.T) {
1: "1",
323412345: "323412345",
9223372036854775807: "9223372036854775807",
-9223372036854775808: "-9223372036854775808",
}
// add negatives
@ -505,6 +506,7 @@ func TestNewFromInt32(t *testing.T) {
1: "1",
323412345: "323412345",
2147483647: "2147483647",
-2147483648: "-2147483648",
}
// add negatives
@ -524,6 +526,25 @@ func TestNewFromInt32(t *testing.T) {
}
}
func TestNewFromUint64(t *testing.T) {
tests := map[uint64]string{
0: "0",
1: "1",
323412345: "323412345",
9223372036854775807: "9223372036854775807",
18446744073709551615: "18446744073709551615",
}
for input, s := range tests {
d := NewFromUint64(input)
if d.String() != s {
t.Errorf("expected %s, got %s (%s, %d)",
s, d.String(),
d.value.String(), d.exp)
}
}
}
func TestNewFromBigIntWithExponent(t *testing.T) {
type Inp struct {
val *big.Int
@ -2395,104 +2416,57 @@ func TestDecimal_Max(t *testing.T) {
}
}
func TestDecimal_Scan(t *testing.T) {
// test the Scan method that implements the
// sql.Scanner interface
// check for the for different type of values
// that are possible to be received from the database
// drivers
func scanHelper(t *testing.T, dbval interface{}, expected Decimal) {
t.Helper()
// in normal operations the db driver (sqlite at least)
// will return an int64 if you specified a numeric format
a := Decimal{}
dbvalue := 54.33
expected := NewFromFloat(dbvalue)
err := a.Scan(dbvalue)
if err != nil {
if err := a.Scan(dbval); err != nil {
// Scan failed... no need to test result value
t.Errorf("a.Scan(54.33) failed with message: %s", err)
} else {
t.Errorf("a.Scan(%v) failed with message: %s", dbval, err)
} else if !a.Equal(expected) {
// Scan succeeded... test resulting values
if !a.Equal(expected) {
t.Errorf("%s does not equal to %s", a, expected)
}
}
}
func TestDecimal_Scan(t *testing.T) {
// test the Scan method that implements the sql.Scanner interface
// check different types received from various database drivers
dbvalue := 54.33
expected := NewFromFloat(dbvalue)
scanHelper(t, dbvalue, expected)
// apparently MySQL 5.7.16 and returns these as float32 so we need
// to handle these as well
dbvalueFloat32 := float32(54.33)
expected = NewFromFloat(float64(dbvalueFloat32))
err = a.Scan(dbvalueFloat32)
if err != nil {
// Scan failed... no need to test result value
t.Errorf("a.Scan(54.33) failed with message: %s", err)
} else {
// Scan succeeded... test resulting values
if !a.Equal(expected) {
t.Errorf("%s does not equal to %s", a, expected)
}
}
scanHelper(t, dbvalueFloat32, expected)
// at least SQLite returns an int64 when 0 is stored in the db
// and you specified a numeric format on the schema
dbvalueInt := int64(0)
expected = New(dbvalueInt, 0)
scanHelper(t, dbvalueInt, expected)
err = a.Scan(dbvalueInt)
if err != nil {
// Scan failed... no need to test result value
t.Errorf("a.Scan(0) failed with message: %s", err)
} else {
// Scan succeeded... test resulting values
if !a.Equal(expected) {
t.Errorf("%s does not equal to %s", a, expected)
}
}
// also test uint64
dbvalueUint64 := uint64(2)
expected = New(2, 0)
scanHelper(t, dbvalueUint64, expected)
// in case you specified a varchar in your SQL schema,
// the database driver will return byte slice []byte
// the database driver may return either []byte or string
valueStr := "535.666"
dbvalueStr := []byte(valueStr)
expected, err = NewFromString(valueStr)
expected, err := NewFromString(valueStr)
if err != nil {
t.Fatal(err)
}
err = a.Scan(dbvalueStr)
if err != nil {
// Scan failed... no need to test result value
t.Errorf("a.Scan('535.666') failed with message: %s", err)
} else {
// Scan succeeded... test resulting values
if !a.Equal(expected) {
t.Errorf("%s does not equal to %s", a, expected)
}
}
// lib/pq can also return strings
expected, err = NewFromString(valueStr)
if err != nil {
t.Fatal(err)
}
err = a.Scan(valueStr)
if err != nil {
// Scan failed... no need to test result value
t.Errorf("a.Scan('535.666') failed with message: %s", err)
} else {
// Scan succeeded... test resulting values
if !a.Equal(expected) {
t.Errorf("%s does not equal to %s", a, expected)
}
}
scanHelper(t, dbvalueStr, expected)
scanHelper(t, valueStr, expected)
type foo struct{}
a := Decimal{}
err = a.Scan(foo{})
if err == nil {
t.Errorf("a.Scan(Foo{}) should have thrown an error but did not")
@ -2621,21 +2595,241 @@ func TestDecimal_Cmp2(t *testing.T) {
}
}
func TestPow(t *testing.T) {
a := New(4, 0)
b := New(2, 0)
x := a.Pow(b)
if x.String() != "16" {
t.Errorf("Error, saw %s", x.String())
func TestDecimal_Pow(t *testing.T) {
for _, testCase := range []struct {
Base string
Exponent string
Expected string
}{
{"0.0", "1.0", "0.0"},
{"0.0", "5.7", "0.0"},
{"0.0", "-3.2", "0.0"},
{"3.13", "0.0", "1.0"},
{"-591.5", "0.0", "1.0"},
{"3.0", "3.0", "27.0"},
{"3.0", "10.0", "59049.0"},
{"3.13", "5.0", "300.4150512793"},
{"4.0", "2.0", "16.0"},
{"4.0", "-2.0", "0.0625"},
{"629.25", "5.0", "98654323103449.5673828125"},
{"5.0", "5.73", "10118.08037159375"},
{"962.0", "3.2791", "6055212360.0000044205714144"},
{"5.69169126", "5.18515912", "8242.26344757948412597909547972726268869189399260047793106028930864"},
{"13.1337", "3.5196719618391835", "8636.856220644773844815693636723928750940666269885"},
{"67762386.283696923", "4.85917691669163916681738", "112761146905370140621385730157437443321.91755738117317148674362233906499698561022574811238435007575701773212242750262081945556470501"},
{"-3.0", "6.0", "729"},
{"-13.757", "5.0", "-492740.983929899460557"},
{"3.0", "-6.0", "0.0013717421124829"},
{"13.757", "-5.0", "0.000002029463821"},
{"66.12", "-7.61313", "0.000000000000013854086588876805036"},
{"6696871.12", "-2.61313", "0.000000000000000001455988684546983"},
{"-3.0", "-6.0", "0.0013717421124829"},
{"-13.757", "-5.0", "-0.000002029463821"},
} {
base, _ := NewFromString(testCase.Base)
exp, _ := NewFromString(testCase.Exponent)
expected, _ := NewFromString(testCase.Expected)
result := base.Pow(exp)
if result.Cmp(expected) != 0 {
t.Errorf("expected %s, got %s, for %s^%s", testCase.Expected, result.String(), testCase.Base, testCase.Exponent)
}
}
}
func TestNegativePow(t *testing.T) {
a := New(4, 0)
b := New(-2, 0)
x := a.Pow(b)
if x.String() != "0.0625" {
t.Errorf("Error, saw %s", x.String())
func TestDecimal_PowWithPrecision(t *testing.T) {
for _, testCase := range []struct {
Base string
Exponent string
Precision int32
Expected string
}{
{"0.0", "1.0", 2, "0.0"},
{"0.0", "5.7", 2, "0.0"},
{"0.0", "-3.2", 2, "0.0"},
{"3.13", "0.0", 2, "1.0"},
{"-591.5", "0.0", 2, "1.0"},
{"3.0", "3.0", 2, "27.0"},
{"3.0", "10.0", 2, "59049.0"},
{"3.13", "5.0", 5, "300.4150512793"},
{"4.0", "2.0", 2, "16.0"},
{"4.0", "-2.0", 2, "0.06"},
{"4.0", "-2.0", 4, "0.0625"},
{"629.25", "5.0", 6, "98654323103449.5673828125"},
{"5.0", "5.73", 20, "10118.080371595019317118681359884375"},
{"962.0", "3.2791", 15, "6055212360.000004406551603058195732"},
{"5.69169126", "5.18515912", 4, "8242.26344757948412587366859330429895955552280978668983459852256"},
{"13.1337", "3.5196719618391835", 8, "8636.85622064477384481569363672392591908386390769375"},
{"67762386.283696923", "4.85917691669163916681738", 10, "112761146905370140621385730157437443321.917557381173174638304347353880676293576708009282115993465286373470882947470198597518762"},
{"-3.0", "6.0", 2, "729"},
{"-13.757", "5.0", 4, "-492740.983929899460557"},
{"3.0", "-6.0", 10, "0.0013717421"},
{"13.757", "-5.0", 20, "0.00000202946382098037"},
{"66.12", "-7.61313", 20, "0.00000000000001385381563049821591633907104023700216"},
{"6696871.12", "-2.61313", 24, "0.0000000000000000014558252733872790626400278983397459207418"},
{"-3.0", "-6.0", 8, "0.00137174"},
{"-13.757", "-5.0", 16, "-0.000002029463821"},
} {
base, _ := NewFromString(testCase.Base)
exp, _ := NewFromString(testCase.Exponent)
expected, _ := NewFromString(testCase.Expected)
result, _ := base.PowWithPrecision(exp, testCase.Precision)
if result.Cmp(expected) != 0 {
t.Errorf("expected %s, got %s, for %s^%s", testCase.Expected, result.String(), testCase.Base, testCase.Exponent)
}
}
}
func TestDecimal_PowWithPrecision_Infinity(t *testing.T) {
for _, testCase := range []struct {
Base string
Exponent string
}{
{"0.0", "0.0"},
{"0.0", "-2.0"},
{"0.0", "-4.6"},
{"-66.12", "7.61313"}, // Imaginary value
{"-5696871.12", "5.61313"}, // Imaginary value
} {
base, _ := NewFromString(testCase.Base)
exp, _ := NewFromString(testCase.Exponent)
_, err := base.PowWithPrecision(exp, 5)
if err == nil {
t.Errorf("lool it should be error")
}
}
}
func TestDecimal_PowWithPrecision_UndefinedResult(t *testing.T) {
base := RequireFromString("0")
exponent := RequireFromString("0")
_, err := base.PowWithPrecision(exponent, 4)
if err == nil {
t.Errorf("expected error, cannot be represent undefined value of 0**0")
}
}
func TestDecimal_PowWithPrecision_InfinityResult(t *testing.T) {
for _, testCase := range []struct {
Base string
Exponent string
}{
{"0.0", "-2.0"},
{"0.0", "-4.6"},
{"0.0", "-9239.671333"},
} {
base, _ := NewFromString(testCase.Base)
exp, _ := NewFromString(testCase.Exponent)
_, err := base.PowWithPrecision(exp, 4)
if err == nil {
t.Errorf("expected error, cannot represent infinity value of 0 ** y, where y < 0")
}
}
}
func TestDecimal_PowWithPrecision_ImaginaryResult(t *testing.T) {
for _, testCase := range []struct {
Base string
Exponent string
}{
{"-0.2261", "106.12"},
{"-66.12", "7.61313"},
{"-5696871.12", "5.61313"},
} {
base, _ := NewFromString(testCase.Base)
exp, _ := NewFromString(testCase.Exponent)
_, err := base.PowWithPrecision(exp, 4)
if err == nil {
t.Errorf("expected error, cannot represent imaginary value of x ** y, where x < 0 and y is non-integer decimal")
}
}
}
func TestDecimal_PowInt32(t *testing.T) {
for _, testCase := range []struct {
Decimal string
Exponent int32
Expected string
}{
{"0.0", 1, "0.0"},
{"3.13", 0, "1.0"},
{"-591.5", 0, "1.0"},
{"3.0", 3, "27.0"},
{"3.0", 10, "59049.0"},
{"3.13", 5, "300.4150512793"},
{"629.25", 5, "98654323103449.5673828125"},
{"-3.0", 6, "729"},
{"-13.757", 5, "-492740.983929899460557"},
{"3.0", -6, "0.0013717421124829"},
{"-13.757", -5, "-0.000002029463821"},
} {
base, _ := NewFromString(testCase.Decimal)
expected, _ := NewFromString(testCase.Expected)
result, _ := base.PowInt32(testCase.Exponent)
if result.Cmp(expected) != 0 {
t.Errorf("expected %s, got %s, for %s**%d", testCase.Expected, result.String(), testCase.Decimal, testCase.Exponent)
}
}
}
func TestDecimal_PowInt32_UndefinedResult(t *testing.T) {
base := RequireFromString("0")
_, err := base.PowInt32(0)
if err == nil {
t.Errorf("expected error, cannot be represent undefined value of 0**0")
}
}
func TestDecimal_PowBigInt(t *testing.T) {
for _, testCase := range []struct {
Decimal string
Exponent *big.Int
Expected string
}{
{"3.13", big.NewInt(0), "1.0"},
{"-591.5", big.NewInt(0), "1.0"},
{"3.0", big.NewInt(3), "27.0"},
{"3.0", big.NewInt(10), "59049.0"},
{"3.13", big.NewInt(5), "300.4150512793"},
{"629.25", big.NewInt(5), "98654323103449.5673828125"},
{"-3.0", big.NewInt(6), "729"},
{"-13.757", big.NewInt(5), "-492740.983929899460557"},
{"3.0", big.NewInt(-6), "0.0013717421124829"},
{"-13.757", big.NewInt(-5), "-0.000002029463821"},
} {
base, _ := NewFromString(testCase.Decimal)
expected, _ := NewFromString(testCase.Expected)
result, _ := base.PowBigInt(testCase.Exponent)
if result.Cmp(expected) != 0 {
t.Errorf("expected %s, got %s, for %s**%d", testCase.Expected, result.String(), testCase.Decimal, testCase.Exponent)
}
}
}
func TestDecimal_PowBigInt_UndefinedResult(t *testing.T) {
base := RequireFromString("0")
_, err := base.PowBigInt(big.NewInt(0))
if err == nil {
t.Errorf("expected error, undefined value of 0**0 cannot be represented")
}
}
@ -2822,6 +3016,7 @@ func TestDecimal_Ln(t *testing.T) {
{"839101.0351094726488848490572028502", 50, "13.64008640145229044389152437468283605382056561604272"},
{"5023583755703750094849.03519358513093500275017501750602739169823", 25, "49.9684305274348922267409953"},
{"5023583755703750094849.03519358513093500275017501750602739169823", -1, "50.0"},
{"66.12", 18, "4.191471272952823429"},
} {
d, _ := NewFromString(testCase.Dec)
expected, _ := NewFromString(testCase.Expected)

2
go.mod
View file

@ -1,3 +1,3 @@
module github.com/shopspring/decimal
go 1.7
go 1.10

38
helpers.go Normal file
View file

@ -0,0 +1,38 @@
package decimal
// Float returns the decimal value as a float64
// float is a helper function for float64() and doesnot return bool exact
func (d Decimal) Float() float64 {
f, _ := d.Float64()
return f
}
// NotEqual returns true when d is not equal to d2
func (d Decimal) NotEqual(d2 Decimal) bool {
return !d.Equal(d2)
}
// Max returns the maximum value between d and d2
func (d Decimal) Max(d2 Decimal) Decimal {
return Max(d, d2)
}
// Min returns the minimum value between d and d2
func (d Decimal) Min(d2 Decimal) Decimal {
return Min(d, d2)
}
//NewFromInt returns a decimal with the value of int v
func NewFromInt(v int) Decimal {
return New(int64(v), 0)
}
//NewFromInt32 returns a decimal with the value of int v
func NewFromInt32(v int) Decimal {
return New(int64(v), 0)
}
//NewFromInt64 returns a decimal with the value of int v
func NewFromInt64(v int64) Decimal {
return New(v, 0)
}

124
numbers.go Normal file
View file

@ -0,0 +1,124 @@
package decimal
// MinusOne defines value -1 in decimal format
var MinusOne = New(-1, 0)
// OneTenth defines value 0.1 in decimal format
var OneTenth = New(1, -1)
// TwoTenth defines value 0.1 in decimal format
var TwoTenth = New(2, -1)
// Half defines value 0.5 in decimal format
var Half = New(5, -1)
// One defines value 1 in decimal format
var One = New(1, 0)
// Two defines value 2 in decimal format
var Two = New(2, 0)
// Three defines value 3 in decimal format
var Three = New(3, 0)
// Four defines value 4 in decimal format
var Four = New(4, 0)
// Five defines value 5 in decimal format
var Five = New(5, 0)
// Six defines value 6 in decimal format
var Six = New(6, 0)
// Seven defines value 6 in decimal format
var Seven = New(7, 0)
// Eight defines value 8 in decimal format
var Eight = New(8, 0)
// Nine defines value 9 in decimal format
var Nine = New(9, 0)
// Ten defines value 10 in decimal format
var Ten = New(10, 0)
// Eleven defines value 11 in decimal format
var Eleven = New(11, 0)
// Twelve defines value 12 in decimal format
var Twelve = New(12, 0)
// Thirteen defines value 13 in decimal format
var Thirteen = New(13, 0)
// Fourteen defines value 14 in decimal format
var Fourteen = New(14, 0)
// Fifteen defines value 15 in decimal format
var Fifteen = New(15, 0)
// Sixteen defines value 16 in decimal format
var Sixteen = New(16, 0)
// Seventeen defines value 17 in decimal format
var Seventeen = New(17, 0)
// Eighteen defines value 18 in decimal format
var Eighteen = New(18, 0)
// Nineteen defines value 19 in decimal format
var Nineteen = New(19, 0)
// Twenty defines value 20 in decimal format
var Twenty = New(20, 0)
// Thirty defines value 30 in decimal format
var Thirty = New(30, 0)
// Forty defines value 40 in decimal format
var Forty = New(40, 0)
// Fifty defines value 50 in decimal format
var Fifty = New(50, 0)
// Sixty defines value 60 in decimal format
var Sixty = New(60, 0)
// Seventy defines value 70 in decimal format
var Seventy = New(70, 0)
// Eighty defines value 80 in decimal format
var Eighty = New(80, 0)
// Ninty defines value 90 in decimal format
var Ninty = New(90, 0)
// Hundred defines value 100 in decimal format
var Hundred = New(100, 0)
// TwoHundred defines value 200 in decimal format
var TwoHundred = New(200, 0)
// ThreeHundred defines value 300 in decimal format
var ThreeHundred = New(300, 0)
// FourHundred defines value 400 in decimal format
var FourHundred = New(400, 0)
// FiveHundred defines value 500 in decimal format
var FiveHundred = New(500, 0)
// SixHundred defines value 600 in decimal format
var SixHundred = New(600, 0)
// SevenHundred defines value 700 in decimal format
var SevenHundred = New(700, 0)
// EightHundred defines value 800 in decimal format
var EightHundred = New(800, 0)
// NineHundred defines value 900 in decimal format
var NineHundred = New(900, 0)
// Thousand defines value 100 in decimal format
var Thousand = New(1000, 0)

35
sqrt.go Normal file
View file

@ -0,0 +1,35 @@
package decimal
const sqrtMaxIter = 10000
// Sqrt returns the square root of d, the result will have
// DivisionPrecision digits after the decimal point.
func (d Decimal) Sqrt() Decimal {
s, _ := d.SqrtRound(int32(DivisionPrecision))
return s
}
// SqrtRound returns the square root of d, the result will have
// precision digits after the decimal point. The bool precise returns whether the precision was reached
func (d Decimal) SqrtRound(precision int32) (Decimal, bool) {
if d.LessThanOrEqualZero() {
return Zero, false
}
cutoff := New(1, -precision)
lo := Zero
hi := d
var mid Decimal
for i := 0; i < sqrtMaxIter; i++ {
//mid = (lo+hi)/2;
mid = lo.Add(hi).DivRound(Two, precision)
if mid.Mul(mid).Sub(d).Abs().LessThan(cutoff) {
return mid, true
}
if mid.Mul(mid).GreaterThan(d) {
hi = mid
} else {
lo = mid
}
}
return mid, false
}

24
sqrt_test.go Normal file
View file

@ -0,0 +1,24 @@
package decimal
import (
"testing"
)
func TestSqrt(t *testing.T) {
tables := []struct {
x Decimal
n Decimal
}{
{One, One},
{Four, Two},
{Sixteen, Four},
{Two, NewFromFloat(1.4142135623730951)},
}
for _, table := range tables {
result := table.x.Sqrt()
if result.NotEqual(table.n) {
t.Errorf("Sqrt of (%v) was incorrect, got: %v, want: %v.", table.x.String(), result.String(), table.n.String())
}
}
}

31
zero.go Normal file
View file

@ -0,0 +1,31 @@
package decimal
// EqualZero returns whether the numbers represented by d equals zero.
func (d Decimal) EqualZero() bool {
return d.Equal(Zero)
}
// NotZero returns whether d is not zero
func (d Decimal) NotZero() bool {
return !d.EqualZero()
}
// GreaterThanZero (GT0) returns true when d is greater than zero.
func (d Decimal) GreaterThanZero() bool {
return d.GreaterThan(Zero)
}
// GreaterThanOrEqualZero (GTE0) returns true when d is greater than or equal to zero.
func (d Decimal) GreaterThanOrEqualZero() bool {
return d.GreaterThanOrEqual(Zero)
}
// LessThanZero returns true when d is less than zero.
func (d Decimal) LessThanZero() bool {
return d.LessThan(Zero)
}
// LessThanOrEqualZero returns true when d is less than or equal to zero.
func (d Decimal) LessThanOrEqualZero() bool {
return d.LessThanOrEqual(Zero)
}