mirror of
https://github.com/shopspring/decimal.git
synced 2024-11-23 04:40:49 +01:00
867ed12000
* fix: fix rounding in FormatFloat fallback path
160 lines
5.1 KiB
Go
160 lines
5.1 KiB
Go
// Copyright 2009 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
// Multiprecision decimal numbers.
|
|
// For floating-point formatting only; not general purpose.
|
|
// Only operations are assign and (binary) left/right shift.
|
|
// Can do binary floating point in multiprecision decimal precisely
|
|
// because 2 divides 10; cannot do decimal floating point
|
|
// in multiprecision binary precisely.
|
|
|
|
package decimal
|
|
|
|
type floatInfo struct {
|
|
mantbits uint
|
|
expbits uint
|
|
bias int
|
|
}
|
|
|
|
var float32info = floatInfo{23, 8, -127}
|
|
var float64info = floatInfo{52, 11, -1023}
|
|
|
|
// roundShortest rounds d (= mant * 2^exp) to the shortest number of digits
|
|
// that will let the original floating point value be precisely reconstructed.
|
|
func roundShortest(d *decimal, mant uint64, exp int, flt *floatInfo) {
|
|
// If mantissa is zero, the number is zero; stop now.
|
|
if mant == 0 {
|
|
d.nd = 0
|
|
return
|
|
}
|
|
|
|
// Compute upper and lower such that any decimal number
|
|
// between upper and lower (possibly inclusive)
|
|
// will round to the original floating point number.
|
|
|
|
// We may see at once that the number is already shortest.
|
|
//
|
|
// Suppose d is not denormal, so that 2^exp <= d < 10^dp.
|
|
// The closest shorter number is at least 10^(dp-nd) away.
|
|
// The lower/upper bounds computed below are at distance
|
|
// at most 2^(exp-mantbits).
|
|
//
|
|
// So the number is already shortest if 10^(dp-nd) > 2^(exp-mantbits),
|
|
// or equivalently log2(10)*(dp-nd) > exp-mantbits.
|
|
// It is true if 332/100*(dp-nd) >= exp-mantbits (log2(10) > 3.32).
|
|
minexp := flt.bias + 1 // minimum possible exponent
|
|
if exp > minexp && 332*(d.dp-d.nd) >= 100*(exp-int(flt.mantbits)) {
|
|
// The number is already shortest.
|
|
return
|
|
}
|
|
|
|
// d = mant << (exp - mantbits)
|
|
// Next highest floating point number is mant+1 << exp-mantbits.
|
|
// Our upper bound is halfway between, mant*2+1 << exp-mantbits-1.
|
|
upper := new(decimal)
|
|
upper.Assign(mant*2 + 1)
|
|
upper.Shift(exp - int(flt.mantbits) - 1)
|
|
|
|
// d = mant << (exp - mantbits)
|
|
// Next lowest floating point number is mant-1 << exp-mantbits,
|
|
// unless mant-1 drops the significant bit and exp is not the minimum exp,
|
|
// in which case the next lowest is mant*2-1 << exp-mantbits-1.
|
|
// Either way, call it mantlo << explo-mantbits.
|
|
// Our lower bound is halfway between, mantlo*2+1 << explo-mantbits-1.
|
|
var mantlo uint64
|
|
var explo int
|
|
if mant > 1<<flt.mantbits || exp == minexp {
|
|
mantlo = mant - 1
|
|
explo = exp
|
|
} else {
|
|
mantlo = mant*2 - 1
|
|
explo = exp - 1
|
|
}
|
|
lower := new(decimal)
|
|
lower.Assign(mantlo*2 + 1)
|
|
lower.Shift(explo - int(flt.mantbits) - 1)
|
|
|
|
// The upper and lower bounds are possible outputs only if
|
|
// the original mantissa is even, so that IEEE round-to-even
|
|
// would round to the original mantissa and not the neighbors.
|
|
inclusive := mant%2 == 0
|
|
|
|
// As we walk the digits we want to know whether rounding up would fall
|
|
// within the upper bound. This is tracked by upperdelta:
|
|
//
|
|
// If upperdelta == 0, the digits of d and upper are the same so far.
|
|
//
|
|
// If upperdelta == 1, we saw a difference of 1 between d and upper on a
|
|
// previous digit and subsequently only 9s for d and 0s for upper.
|
|
// (Thus rounding up may fall outside the bound, if it is exclusive.)
|
|
//
|
|
// If upperdelta == 2, then the difference is greater than 1
|
|
// and we know that rounding up falls within the bound.
|
|
var upperdelta uint8
|
|
|
|
// Now we can figure out the minimum number of digits required.
|
|
// Walk along until d has distinguished itself from upper and lower.
|
|
for ui := 0; ; ui++ {
|
|
// lower, d, and upper may have the decimal points at different
|
|
// places. In this case upper is the longest, so we iterate from
|
|
// ui==0 and start li and mi at (possibly) -1.
|
|
mi := ui - upper.dp + d.dp
|
|
if mi >= d.nd {
|
|
break
|
|
}
|
|
li := ui - upper.dp + lower.dp
|
|
l := byte('0') // lower digit
|
|
if li >= 0 && li < lower.nd {
|
|
l = lower.d[li]
|
|
}
|
|
m := byte('0') // middle digit
|
|
if mi >= 0 {
|
|
m = d.d[mi]
|
|
}
|
|
u := byte('0') // upper digit
|
|
if ui < upper.nd {
|
|
u = upper.d[ui]
|
|
}
|
|
|
|
// Okay to round down (truncate) if lower has a different digit
|
|
// or if lower is inclusive and is exactly the result of rounding
|
|
// down (i.e., and we have reached the final digit of lower).
|
|
okdown := l != m || inclusive && li+1 == lower.nd
|
|
|
|
switch {
|
|
case upperdelta == 0 && m+1 < u:
|
|
// Example:
|
|
// m = 12345xxx
|
|
// u = 12347xxx
|
|
upperdelta = 2
|
|
case upperdelta == 0 && m != u:
|
|
// Example:
|
|
// m = 12345xxx
|
|
// u = 12346xxx
|
|
upperdelta = 1
|
|
case upperdelta == 1 && (m != '9' || u != '0'):
|
|
// Example:
|
|
// m = 1234598x
|
|
// u = 1234600x
|
|
upperdelta = 2
|
|
}
|
|
// Okay to round up if upper has a different digit and either upper
|
|
// is inclusive or upper is bigger than the result of rounding up.
|
|
okup := upperdelta > 0 && (inclusive || upperdelta > 1 || ui+1 < upper.nd)
|
|
|
|
// If it's okay to do either, then round to the nearest one.
|
|
// If it's okay to do only one, do it.
|
|
switch {
|
|
case okdown && okup:
|
|
d.Round(mi + 1)
|
|
return
|
|
case okdown:
|
|
d.RoundDown(mi + 1)
|
|
return
|
|
case okup:
|
|
d.RoundUp(mi + 1)
|
|
return
|
|
}
|
|
}
|
|
}
|