go fmt some stuff

This commit is contained in:
Brian Picciano 2019-09-22 16:48:48 -04:00
parent a36b5d85f3
commit 0ea7e08d01

View file

@ -1261,174 +1261,174 @@ func (d Decimal) satan() Decimal {
}
// sin coefficients
var _sin = [...]Decimal{
NewFromFloat(1.58962301576546568060E-10), // 0x3de5d8fd1fd19ccd
NewFromFloat(-2.50507477628578072866E-8), // 0xbe5ae5e5a9291f5d
NewFromFloat(2.75573136213857245213E-6), // 0x3ec71de3567d48a1
NewFromFloat(-1.98412698295895385996E-4), // 0xbf2a01a019bfdf03
NewFromFloat(8.33333333332211858878E-3), // 0x3f8111111110f7d0
NewFromFloat(-1.66666666666666307295E-1), // 0xbfc5555555555548
}
var _sin = [...]Decimal{
NewFromFloat(1.58962301576546568060E-10), // 0x3de5d8fd1fd19ccd
NewFromFloat(-2.50507477628578072866E-8), // 0xbe5ae5e5a9291f5d
NewFromFloat(2.75573136213857245213E-6), // 0x3ec71de3567d48a1
NewFromFloat(-1.98412698295895385996E-4), // 0xbf2a01a019bfdf03
NewFromFloat(8.33333333332211858878E-3), // 0x3f8111111110f7d0
NewFromFloat(-1.66666666666666307295E-1), // 0xbfc5555555555548
}
// Sin returns the sine of the radian argument x.
func (d Decimal) Sin() Decimal {
PI4A := NewFromFloat(7.85398125648498535156E-1) // 0x3fe921fb40000000, Pi/4 split into three parts
PI4B := NewFromFloat(3.77489470793079817668E-8) // 0x3e64442d00000000,
PI4C := NewFromFloat(2.69515142907905952645E-15) // 0x3ce8469898cc5170,
M4PI := NewFromFloat(1.273239544735162542821171882678754627704620361328125) // 4/pi
func (d Decimal) Sin() Decimal {
PI4A := NewFromFloat(7.85398125648498535156E-1) // 0x3fe921fb40000000, Pi/4 split into three parts
PI4B := NewFromFloat(3.77489470793079817668E-8) // 0x3e64442d00000000,
PI4C := NewFromFloat(2.69515142907905952645E-15) // 0x3ce8469898cc5170,
M4PI := NewFromFloat(1.273239544735162542821171882678754627704620361328125) // 4/pi
if d.Equal(NewFromFloat(0.0)) {
return d
}
// make argument positive but save the sign
sign := false
if d.LessThan(NewFromFloat(0.0)) {
d = d.Neg()
sign = true
}
if d.Equal(NewFromFloat(0.0)) {
return d
}
// make argument positive but save the sign
sign := false
if d.LessThan(NewFromFloat(0.0)) {
d = d.Neg()
sign = true
}
j := d.Mul(M4PI).IntPart() // integer part of x/(Pi/4), as integer for tests on the phase angle
y := NewFromFloat(float64(j)) // integer part of x/(Pi/4), as float
j := d.Mul(M4PI).IntPart() // integer part of x/(Pi/4), as integer for tests on the phase angle
y := NewFromFloat(float64(j)) // integer part of x/(Pi/4), as float
// map zeros to origin
if j&1 == 1 {
j++
y = y.Add(NewFromFloat(1.0))
}
j &= 7 // octant modulo 2Pi radians (360 degrees)
// reflect in x axis
if j > 3 {
sign = !sign
j -= 4
}
z := d.Sub(y.Mul(PI4A)).Sub(y.Mul(PI4B)).Sub(y.Mul(PI4C)) // Extended precision modular arithmetic
zz := z.Mul(z)
// map zeros to origin
if j&1 == 1 {
j++
y = y.Add(NewFromFloat(1.0))
}
j &= 7 // octant modulo 2Pi radians (360 degrees)
// reflect in x axis
if j > 3 {
sign = !sign
j -= 4
}
z := d.Sub(y.Mul(PI4A)).Sub(y.Mul(PI4B)).Sub(y.Mul(PI4C)) // Extended precision modular arithmetic
zz := z.Mul(z)
if j == 1 || j == 2 {
w := zz.Mul(zz).Mul(_cos[0].Mul(zz).Add(_cos[1]).Mul(zz).Add(_cos[2]).Mul(zz).Add(_cos[3]).Mul(zz).Add(_cos[4]).Mul(zz).Add(_cos[5]))
y = NewFromFloat(1.0).Sub(NewFromFloat(0.5).Mul(zz)).Add(w)
} else {
y = z.Add(z.Mul(zz).Mul(_sin[0].Mul(zz).Add(_sin[1]).Mul(zz).Add(_sin[2]).Mul(zz).Add(_sin[3]).Mul(zz).Add(_sin[4]).Mul(zz).Add(_sin[5])))
}
if sign {
y = y.Neg()
}
return y
}
if j == 1 || j == 2 {
w := zz.Mul(zz).Mul(_cos[0].Mul(zz).Add(_cos[1]).Mul(zz).Add(_cos[2]).Mul(zz).Add(_cos[3]).Mul(zz).Add(_cos[4]).Mul(zz).Add(_cos[5]))
y = NewFromFloat(1.0).Sub(NewFromFloat(0.5).Mul(zz)).Add(w)
} else {
y = z.Add(z.Mul(zz).Mul(_sin[0].Mul(zz).Add(_sin[1]).Mul(zz).Add(_sin[2]).Mul(zz).Add(_sin[3]).Mul(zz).Add(_sin[4]).Mul(zz).Add(_sin[5])))
}
if sign {
y = y.Neg()
}
return y
}
// cos coefficients
var _cos = [...]Decimal{
NewFromFloat(-1.13585365213876817300E-11), // 0xbda8fa49a0861a9b
NewFromFloat(2.08757008419747316778E-9), // 0x3e21ee9d7b4e3f05
NewFromFloat(-2.75573141792967388112E-7), // 0xbe927e4f7eac4bc6
NewFromFloat(2.48015872888517045348E-5), // 0x3efa01a019c844f5
NewFromFloat(-1.38888888888730564116E-3), // 0xbf56c16c16c14f91
NewFromFloat(4.16666666666665929218E-2), // 0x3fa555555555554b
}
// cos coefficients
var _cos = [...]Decimal{
NewFromFloat(-1.13585365213876817300E-11), // 0xbda8fa49a0861a9b
NewFromFloat(2.08757008419747316778E-9), // 0x3e21ee9d7b4e3f05
NewFromFloat(-2.75573141792967388112E-7), // 0xbe927e4f7eac4bc6
NewFromFloat(2.48015872888517045348E-5), // 0x3efa01a019c844f5
NewFromFloat(-1.38888888888730564116E-3), // 0xbf56c16c16c14f91
NewFromFloat(4.16666666666665929218E-2), // 0x3fa555555555554b
}
// Cos returns the cosine of the radian argument x.
func (d Decimal) Cos() Decimal {
// Cos returns the cosine of the radian argument x.
func (d Decimal) Cos() Decimal {
PI4A := NewFromFloat(7.85398125648498535156E-1) // 0x3fe921fb40000000, Pi/4 split into three parts
PI4B := NewFromFloat(3.77489470793079817668E-8) // 0x3e64442d00000000,
PI4C := NewFromFloat(2.69515142907905952645E-15) // 0x3ce8469898cc5170,
M4PI := NewFromFloat(1.273239544735162542821171882678754627704620361328125) // 4/pi
PI4A := NewFromFloat(7.85398125648498535156E-1) // 0x3fe921fb40000000, Pi/4 split into three parts
PI4B := NewFromFloat(3.77489470793079817668E-8) // 0x3e64442d00000000,
PI4C := NewFromFloat(2.69515142907905952645E-15) // 0x3ce8469898cc5170,
M4PI := NewFromFloat(1.273239544735162542821171882678754627704620361328125) // 4/pi
// make argument positive
sign := false
if d.LessThan(NewFromFloat(0.0)) {
d = d.Neg()
}
// make argument positive
sign := false
if d.LessThan(NewFromFloat(0.0)) {
d = d.Neg()
}
j := d.Mul(M4PI).IntPart() // integer part of x/(Pi/4), as integer for tests on the phase angle
y := NewFromFloat(float64(j)) // integer part of x/(Pi/4), as float
j := d.Mul(M4PI).IntPart() // integer part of x/(Pi/4), as integer for tests on the phase angle
y := NewFromFloat(float64(j)) // integer part of x/(Pi/4), as float
// map zeros to origin
if j&1 == 1 {
j++
y = y.Add(NewFromFloat(1.0))
}
j &= 7 // octant modulo 2Pi radians (360 degrees)
// reflect in x axis
if j > 3 {
sign = !sign
j -= 4
}
if j > 1 {
sign = !sign
}
// map zeros to origin
if j&1 == 1 {
j++
y = y.Add(NewFromFloat(1.0))
}
j &= 7 // octant modulo 2Pi radians (360 degrees)
// reflect in x axis
if j > 3 {
sign = !sign
j -= 4
}
if j > 1 {
sign = !sign
}
z := d.Sub(y.Mul(PI4A)).Sub(y.Mul(PI4B)).Sub(y.Mul(PI4C)) // Extended precision modular arithmetic
zz := z.Mul(z)
z := d.Sub(y.Mul(PI4A)).Sub(y.Mul(PI4B)).Sub(y.Mul(PI4C)) // Extended precision modular arithmetic
zz := z.Mul(z)
if j == 1 || j == 2 {
y = z.Add(z.Mul(zz).Mul(_sin[0].Mul(zz).Add(_sin[1]).Mul(zz).Add(_sin[2]).Mul(zz).Add(_sin[3]).Mul(zz).Add(_sin[4]).Mul(zz).Add(_sin[5])))
} else {
w := zz.Mul(zz).Mul(_cos[0].Mul(zz).Add(_cos[1]).Mul(zz).Add(_cos[2]).Mul(zz).Add(_cos[3]).Mul(zz).Add(_cos[4]).Mul(zz).Add(_cos[5]))
y = NewFromFloat(1.0).Sub(NewFromFloat(0.5).Mul(zz)).Add(w)
}
if sign {
y = y.Neg()
}
return y
}
if j == 1 || j == 2 {
y = z.Add(z.Mul(zz).Mul(_sin[0].Mul(zz).Add(_sin[1]).Mul(zz).Add(_sin[2]).Mul(zz).Add(_sin[3]).Mul(zz).Add(_sin[4]).Mul(zz).Add(_sin[5])))
} else {
w := zz.Mul(zz).Mul(_cos[0].Mul(zz).Add(_cos[1]).Mul(zz).Add(_cos[2]).Mul(zz).Add(_cos[3]).Mul(zz).Add(_cos[4]).Mul(zz).Add(_cos[5]))
y = NewFromFloat(1.0).Sub(NewFromFloat(0.5).Mul(zz)).Add(w)
}
if sign {
y = y.Neg()
}
return y
}
var _tanP = [...]Decimal{
NewFromFloat(-1.30936939181383777646E+4), // 0xc0c992d8d24f3f38
NewFromFloat(1.15351664838587416140E+6), // 0x413199eca5fc9ddd
NewFromFloat(-1.79565251976484877988E+7), // 0xc1711fead3299176
}
var _tanQ = [...]Decimal{
NewFromFloat(1.00000000000000000000E+0),
NewFromFloat(1.36812963470692954678E+4), //0x40cab8a5eeb36572
NewFromFloat(-1.32089234440210967447E+6), //0xc13427bc582abc96
NewFromFloat(2.50083801823357915839E+7), //0x4177d98fc2ead8ef
NewFromFloat(-5.38695755929454629881E+7), //0xc189afe03cbe5a31
}
var _tanP = [...]Decimal{
NewFromFloat(-1.30936939181383777646E+4), // 0xc0c992d8d24f3f38
NewFromFloat(1.15351664838587416140E+6), // 0x413199eca5fc9ddd
NewFromFloat(-1.79565251976484877988E+7), // 0xc1711fead3299176
}
var _tanQ = [...]Decimal{
NewFromFloat(1.00000000000000000000E+0),
NewFromFloat(1.36812963470692954678E+4), //0x40cab8a5eeb36572
NewFromFloat(-1.32089234440210967447E+6), //0xc13427bc582abc96
NewFromFloat(2.50083801823357915839E+7), //0x4177d98fc2ead8ef
NewFromFloat(-5.38695755929454629881E+7), //0xc189afe03cbe5a31
}
// Tan returns the tangent of the radian argument x.
func (d Decimal) Tan() Decimal {
// Tan returns the tangent of the radian argument x.
func (d Decimal) Tan() Decimal {
PI4A := NewFromFloat(7.85398125648498535156E-1) // 0x3fe921fb40000000, Pi/4 split into three parts
PI4B := NewFromFloat(3.77489470793079817668E-8) // 0x3e64442d00000000,
PI4C := NewFromFloat(2.69515142907905952645E-15) // 0x3ce8469898cc5170,
M4PI := NewFromFloat(1.273239544735162542821171882678754627704620361328125) // 4/pi
PI4A := NewFromFloat(7.85398125648498535156E-1) // 0x3fe921fb40000000, Pi/4 split into three parts
PI4B := NewFromFloat(3.77489470793079817668E-8) // 0x3e64442d00000000,
PI4C := NewFromFloat(2.69515142907905952645E-15) // 0x3ce8469898cc5170,
M4PI := NewFromFloat(1.273239544735162542821171882678754627704620361328125) // 4/pi
if d.Equal(NewFromFloat(0.0)) {
return d
}
if d.Equal(NewFromFloat(0.0)) {
return d
}
// make argument positive but save the sign
sign := false
if d.LessThan(NewFromFloat(0.0)) {
d = d.Neg()
sign = true
}
// make argument positive but save the sign
sign := false
if d.LessThan(NewFromFloat(0.0)) {
d = d.Neg()
sign = true
}
j := d.Mul(M4PI).IntPart() // integer part of x/(Pi/4), as integer for tests on the phase angle
y := NewFromFloat(float64(j)) // integer part of x/(Pi/4), as float
j := d.Mul(M4PI).IntPart() // integer part of x/(Pi/4), as integer for tests on the phase angle
y := NewFromFloat(float64(j)) // integer part of x/(Pi/4), as float
// map zeros to origin
if j&1 == 1 {
j++
y = y.Add(NewFromFloat(1.0))
}
// map zeros to origin
if j&1 == 1 {
j++
y = y.Add(NewFromFloat(1.0))
}
z := d.Sub(y.Mul(PI4A)).Sub(y.Mul(PI4B)).Sub(y.Mul(PI4C)) // Extended precision modular arithmetic
zz := z.Mul(z)
z := d.Sub(y.Mul(PI4A)).Sub(y.Mul(PI4B)).Sub(y.Mul(PI4C)) // Extended precision modular arithmetic
zz := z.Mul(z)
if zz.GreaterThan(NewFromFloat(1e-14)) {
w := zz.Mul(_tanP[0].Mul(zz).Add(_tanP[1]).Mul(zz).Add(_tanP[2]))
x := zz.Add(_tanQ[1]).Mul(zz).Add(_tanQ[2]).Mul(zz).Add(_tanQ[3]).Mul(zz).Add(_tanQ[4])
y = z.Add(z.Mul(w.Div(x)))
} else {
y = z
}
if j&2 == 2 {
y = NewFromFloat(-1.0).Div(y)
}
if sign {
y = y.Neg()
}
return y
}
if zz.GreaterThan(NewFromFloat(1e-14)) {
w := zz.Mul(_tanP[0].Mul(zz).Add(_tanP[1]).Mul(zz).Add(_tanP[2]))
x := zz.Add(_tanQ[1]).Mul(zz).Add(_tanQ[2]).Mul(zz).Add(_tanQ[3]).Mul(zz).Add(_tanQ[4])
y = z.Add(z.Mul(w.Div(x)))
} else {
y = z
}
if j&2 == 2 {
y = NewFromFloat(-1.0).Div(y)
}
if sign {
y = y.Neg()
}
return y
}